

ROBOMINERS Deliverable D4.1

SOFTWARE ARCHITECTURE
Revised Version

Summary:
The work in T4.1 has produced a SysML model that captures the initial ideas on the
ROBOMINERS system architecture. The model maps the miner operational
requirements into a set of structural and behavioural elements that realize the system
vision. This document reflects this mapping and its realization as a software architecture
for the robot controller.

This is a revised version of the deliverable addressing the modifications requested by the
review team in the first review report.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement nº 820971.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 2 / 58

Title: Software Architecture
Lead beneficiary: UPM
Other beneficiaries: TAU, RCI, TALTECH, RBINS
Due date: M12
Nature: Public
Diffusion: all Partners
Status: Working Document
Document code:

Revision history Author Delivery date Summary of changes and comments
Version 01 RS 2020/07/13 Initial version of the document / model
Version 02 RS 2020/08/16 Initial release of the deliverable
Version 1 RS 2020/08/18 Added executive summary
Version 2 RS,EA 2021/06/28 Adapted to review report requirements

Approval status
 Name Function Date Signature
Deliverable
responsible

Ricardo Sanz / UPM Author 1/7/2021

WP leader Ricardo Sanz / UPM WPL 1/7/2021

Reviewer Stephen Henley /

RCI
QC 1/7/2021

Reviewer Jussi Aaltonen / TAU QC 2/7/2021

Project
Coordinator

Claudio Rossi / UPM PM 2/7/2021

This document reflects only the authors’ view and the European Commission is not responsible for any
use that may be made of the information it contains.

Diffusion List
Partner name Name e-mail
All partners - robominers_all@autolistas.upm.es

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 3 / 58

REVISION SUMMARY

This is version 2 of Deliverable 4.1 that addresses the changes requested in the 1st review report.

Revision Request

“Please elaborate in more detail on the text and diagrams on pages 14 through 78, in particular
providing rationale for including the in this report, as they seem not to be relevant to the DoA. The DoA
required software interfaces to be developed. Moreover, in Task 4.1 a robot middleware was to be
developed. Please elaborate on the status of work in this regard. The scope of the provided functional
architecture (pages 111-122) seems very limited. If these are just examples, state this explicitly. Please
elaborate of the overall status of work in this area.”

Revision Scope in relation with Revision Requests (review report text in red)

“Elaborate in more detail on the text and diagrams on pages 14 through 78, in particular providing
rationale for including the in this report, as they seem not to be relevant to the DoA.”

We have simplified the document removing content not relevant to the DoA. We have added textual
explanations of its content throughout.

“The DoA required software interfaces to be developed. Moreover, in Task 4.1 a robot middleware was
to be developed. Please elaborate on the status of work in this regard. “

The deliverable now describes the software interfaces for the robot control subsystems and details the
middleware to be used.

“The scope of the provided functional architecture (pages 111-122) seems very limited. If these are just
examples, state this explicitly. Please elaborate of the overall status of work in this area.”

The description of the control system base and functional architecture are now more focused and
deepened using a scenario analysis and function identification.

DoW Task/Deliverable description

Task 4.1 Robot software architecture (Lead: UPM; Part.: TalTech, TAU, RCI)

This task develops a robot software architecture and will be developed in coordination with Task 3.1
(definition of system requirements) and taking into account the outcomes of the relevant sub-tasks of
WP2. Based on the requirements of the computational power, selected sensor modalities and
locomotion mechanism, drivers are defined, the robot middleware is developed based on ROS
middleware and a GUI is worked out for rapid and easy testing of various sensor configurations and
navigation strategies. The architecture is intended to be cross-layer fault tolerant including a health
map and diagnostics features. System/Software architecture will be described in SysML/UML (Systems
Modeling Language / Unified Modeling Language), standardized visual modeling languages developed
for specifying, visualizing, constructing, and documenting complex software systems. This is a key task
whose primary function is to allow easy integration of all the software components (from perception to
navigation and control) of the robot. The key activities are: a.) architecture framework development; b.)
definition and implementation of software interfaces.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 4 / 58

EXECUTIVE SUMMARY

Task 4.1 Robot software architecture [M6-M18] is part of WP4 - Miner software architecture and control
[Months: 6-42]. The objective of this task is the development of a robot software architecture and the
implementation of architectural software elements.

The robot software architecture shall address project needs (robots, mining capabilities) as identified in
WP2 and WP3.The architecture shall be capable of controlling a modular, underground robot to perform
mining operations in difficult conditions (e.g. high deep or submerged). The architecture is intended to
be cross-layer fault tolerant including a health map and diagnostics features. Adaptation is a key issue
in non-attended systems and hence for these robots.

The architecture primary function is to allow easy integration of all the software components (from
perception to navigation and control) of the robot to provide the mining mission required capabilities.
Functional software components will be developed in many other tasks. Architecture specification will
provide the needed framework to make integration possible.

The system/software architecture is described in a system model using SysML (Systems Modeling
Language), an standardized modeling language developed for specifying, visualizing, constructing, and
documenting complex systems. This language is used to create and document an architectural model
of the robot software following established architecture standards.

The model produced so far has been built using the Sparx Enterprise Architect tool. This document
(project deliverable D4.1) is an accompanying documentation for this model to help visualising it
without the need of the modelling tool.

The initial work in T4.1 [M6-M12] produced a first SysML model that describes the initial ideas on the
ROBOMINERS system architecture. The model maps the requirements into a set of structural and
behavioural elements that realize the system vision. This document describes the content of this model.

The model is quite complex because it addresses multidimensional aspects that affect the construction
of the system in the context of the ROBOMINERS project:

• Several domains: The developments in the project/system shall address the needs of different
stakeholders in four domains: underground robotics, selective mining, robot bioinspiration and
system autonomy. This implies that the model shall capture aspects and provide views that
address several contexts.

• Several robots: The robotic implications of the four contexts -power robotics, mining robots,

bioinspired robots, adaptive robots- imply the construction of different real and simulated
systems (system variations). This implies that the model shall address the issues both at a
general cross-domain level and a concrete, implementation-oriented level.

The document describes the content of the model: general organization and model resources; project-
related elements and domains; system requirements from different viewpoints; system realization; and
system operation.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 5 / 58

TABLE OF CONTENTS
Table of contents ... 5
1. Introduction .. 7

1.1. About the Deliverable D4.1 ... 7
1.2. Acronyms ... 8
1.3. Mandatory References .. 9
1.4. A Note on Document Content ... 9

2. Model Organization, Domains and Profiles .. 11
2.1. Model Structure and Dependencies .. 11
2.2. Stakeholders and Viewpoints .. 12
2.3. Common Model Resources ... 13

2.3.1. QUDV Library ... 13
2.3.2. Architecture Profile ... 14
2.3.3. Requirements Profile .. 15

2.4. Project Domains ... 15
2.4.1. Mining Domain Context diagram .. 16
2.4.2. Robotics Domain Context diagram ... 17
2.4.3. Autonomy Domain Context diagram .. 18

3. Requirements Specification .. 20
3.1. Use-case and Scenario-based approach ... 20
3.2. System Variations Requirements .. 22

4. System Software Architecture .. 25
4.1. Common Assets ... 27

4.1.1. System Core Software ... 27
4.1.2. Platform Software ... 31

4.2. Functional Assets ... 32
4.2.1. Robot Software ... 32
4.2.2. System Operation Software .. 33
4.2.3. Auxiliary Software ... 34

4.3. System Control ... 35
4.3.1. Overall control structure .. 35
4.3.2. Behaviour generation and control .. 35
4.3.3. System Metacontrol .. 36

5. System Behavior ... 38
5.1. Scenario 1: Go to Location ... 38

5.1.1. Scenario 1 Variants ... 40
5.1.2. Scenario 1 Functions ... 41
5.1.3. Scenario 1 Entities ... 41

5.2. Scenario 2: Mine the ore ... 41
5.2.1. Scenario 2 Variants ... 42
5.2.2. Scenario 2 Functions ... 43
5.2.3. Scenario 2 Entities ... 43

5.3. Scenario 3: Power assurance ... 43
5.3.1. Scenario 3 Variants ... 44
5.3.2. Scenario 3 Functions ... 44
5.3.3. Scenario 3 Entities ... 44

5.4. Scenario 4: Fault detection .. 44

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 6 / 58

5.4.1. Scenario 4 Variants ... 45
5.4.2. Scenario 4 Functions ... 45
5.4.3. Scenario 4 Entities ... 45

5.5. Scenario 5: Reconfiguration .. 45
5.5.1. Scenario 5 Variants ... 46
5.5.2. Scenario 5 Functions ... 46
5.5.3. Scenario 5 Entities ... 46

5.6. Scenario 6: Self-assemble .. 47
5.6.1. Scenario 6 Entities ... 48
5.6.2. Scenario 6 functions .. 48
5.6.3. Scenario 6 variants .. 48
5.6.4. Scenario 6 evaluation .. 49

5.7. Scenario 7: Mine Mapping ... 49
5.7.1. Scenario 7 Variants ... 50
5.7.2. Scenario 7 Functions ... 50
5.7.3. Scenario 7 Entities ... 50

5.8. Scenario Demonstration .. 50
6. Annex: Specification of interfaces .. 52

6.1. Message description .. 52
6.2. Service description ... 53
6.3. Action definition .. 54
6.4. Some Common Interfaces for the Robominer implementation ... 56

6.4.1. Navigation ... 56
6.4.2. Sensors .. 56
6.4.3. Diagnostics .. 57

7. Bibliography .. 58

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 7 / 58

1. INTRODUCTION

The ROBOMINERS developments involve several teams in the construction of a complex system in the
next years. In this process there are some issues that shall be managed to avoid late-minute problems:

• Integration: the different robot parts shall eventually be put together.
• Coverage: all the robot subsystems shall be addressed.
• Evolution: some of them will change along the project.

Organising complex systems construction is the domain of Systems Engineering (SE). For some
developers, SE is mere bureaucracy; for others it is a lifesaver. SE is a disciplined way of building systems.
In this sense, we included in the proposal the use of SysML/UML as a language for the definition of the
control system architecture. SysML is the language advocated by the OMG1 and INCOSE2 for the SE of
modern systems.

The ROBOMINERS team has decided to employ a model-based system engineering (MBSE) strategy to
address the software/system developments in the project. Being this project a research-oriented
project the role that the model plays is more oriented towards team communication than to automated
software synthesis. However, we consider that having a stable, consortium-wide, well documented view
of the system pays for the effort in building and maintaining such a model.

Hence the ROBOMINERS System is described by means of a semi-formal model that employs the
standardized SysML systems modeling language (OMG, 2019). This deliverable captures a snapshot of
ROBOMINERS Software Architecture. The complete model will evolve during project execution, being a
major asset for the different systems engineering activities involved in this project.

1.1. About the Deliverable D4.1
This deliverable (D4.1) describes the software architecture according to initial systems engineering
activities (Walden, Roedler, Forsberg, & Hamelin, 2015). The project uses an MBSE approach and a
SysML system model is used to organise the system engineering workflow. In case of discrepancy, the
model has the authority, not this document.

In principle, the content of the deliverable D4.1 as stated in the project Technical Annex (ROBOMINERS,
2019) was restricted to the software subsystem but it was decided to enlarge it to include not only
software but reference to other system elements including hardware (i.e. also the physical robot and
supporting subsystems). This enlargement was considered necessary for two reasons:

1. The software part and its architecture is of difficult understandability unless set in an adequate
interpretation context (the robot system it controls).

2. Having a more complete model will help other activities in the project (i.e. in other WPs).

The focus of the document is the RoboMiner system software. Figure 1 describes the RoboMiner System
System Context. The System Context shows the elements in the environment where the RM System
performs its activities and that interact with the system:

1 OMG: Object Management Group (www.omg.org).
2 INCOSE: International Council on Systems Engineering (www.incose.org)

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 8 / 58

• The robot mines the Mine and delivers slurry to a Slurry Processor.
• Power and Water sources are necessary to support robot operation.
• The whole system is situated in a larger mining ecosystem that determines operational

conditions for the selective mining operations of the robot.

Figure 1 content is a SysML Block Definition Diagram (BDD). Tutorial materials on SysML are broadly
available. The specification itself is a public document that can be downloaded from:

https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf

Figure 1: RoboMiner System System Context.

As a brief intro to SysML BDDs, the System Context BDD of Figure 1 shows the following elements:

• A header box: that says this is a BDD that describes the System Context associated to the System
Hierarchy package.

• A frame: an external box that sets the context of analysis (the System Hierarchy in this diagram).
• Some blocks: That are labelled with the stereotype <<block>> to indicate that they are systems,

subsystems and entities of relevance, and the stereotype <<external>> to indicate that they are
not in the scope of the RoboMiner System.

• Some links: That reflect the existence of a relation between blocks.

The diagram describes the entities involved (blocks) that include the RoboMiner system and the
surrounding elements that interact with it (in particular the mine, supporting elements like water and
power sources, and the entities that use the extracted materials, the slurry processor and the
ecosystem).

1.2. Acronyms
These are some acronyms that are used in this document:

BDD: Block Definition Diagram
MBSE: Model-based Systems Engineering.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 9 / 58

OMG: Object Management Group (www.omg.org).
QUDV: Quantities, Units, Dimensions and Values. A predefined library with model elements to

represent physical aspects of systems. The QUDV library is introduced in the OMG SysML
Specification Annex E.

RM: RoboMiners.
SE: Systems Engineering.
SysML: OMG Systems Modeling Language.

1.3. Mandatory References
The model described in this deliverable follows the SysML 1.6 specification (OMG, 2019):

• OMG Systems Modeling Language (OMG SysML™) Version 1.6. Object Management Group.
2019.

The architectural modelling approach follows the ISO standard on architecture description (ISO, 2011):

• ISO/IEC/IEEE 42010-2011 – Systems and software engineering – Architecture description.
International Standards Organization. 2011.

1.4. A Note on Document Content
The ROBOMINERS model is organized as a series of packages that contain representations of the system
under development considering the different phases of the project and the different viewpoints
involved.

The initial sections of this document contain information about the Model and Project View packages.
These packages contain reference material to understand and use the model.

The System Model is captured in four main packages:

• User and System Requirements.
• The Mining Environment that contains the system.
• The System Realization package that describes the construction of the system.
• The System Operational package that describes the operation and use of the system.

The concrete design aspects that are central to the system architecture are contained in the system
realization section of the model. This realization of the system is described in five packages:

• The System Hierarchy that describes the structural elements and relations in the system.
• The System Behavior that describes behavioral aspects of the system.
• The System Control package that describes the software and control mechanisms.
• The System Instances package that describes the specific robots that are going to be built in the

project.

Finally, the Module Library contains elements that are used transversally in different subsystems.

Given the early status of the model describe in this deliverable, the most relevant content can be found
in the Requirements and description of the System Hierarchy.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 10 / 58

Beware that the project addresses different objectives and that there will be different implementations
of systems to address the needs of the project (esp. robots and simulations).

This implies that there are architectural descriptions that are general -apply to different robots- and
other that are specific of concrete ones. In particular:

• The RM1 robot is the full-size robot that will be able to perform real mining.
• The RM2 robot is a modular, small scale system that is used to explore robot reconfiguration

strategies.

The following sections reflect the structure of the Sparx Enterprise Architect system model. Their
content is automatically generated from the model itself using the model exporting mechanisms of the
tool.

Figure 2: Robominer System General Structure.

bdd [package] System Instances [Robominer System General Structure]

«block»
Robot Operation

Subsystem

«block»
Underground Segment

«block»
Surface Segment

«block»
Water Hydraulic

Powerpack

«block»
Slurry Pumping

Station

«block»
Electric Power

Supply

«block»
Tether

«block»
Slurry Transport

«block»
Data Handling

Subsystem

«block»
System Operation

Subsystem

Operator

«block»
Support Subsystem

«block»
System Operation

Station

«block»
External Interface

«block»
Robot Operation

Station

«block»
Mine Sensors

«block»
Spares

«block»
Robot

«block»
Run-time Simulator

«block»
Mine Simulator

«block»
Robot Twin

«block»
RoboMiner System

«block»
Body Module

«block»
Production Module

«block»
Support Module

This is an overall view of the ROBOMINERS system
architecture.

0..1

1

0..1

1

1..*

1

2..*

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 11 / 58

2. MODEL ORGANIZATION, DOMAINS AND PROFILES
The system model described in this deliverable contains the artefacts associated with the model-based
systems engineering approach used in this project. These include use cases, scenarios, requirements,
structural diagrams, behavioural diagrams and cross-cutting aspects.

The model is complex due to the different objectives addressed by the ROBOMINERS project and the
complexities of robot control in underground harsh conditions.

This chapter describes some common, transversal elements, that are used to organise and label model
elements to manage this complexity.

2.1. Model Structure and Dependencies
The ROBOMINERS project is organized as a series of packages (see Figure 3) that contain representations
of the system under development considering the different phases of the project and the different
viewpoints involved. The About the Model and Project View packages contain reference material to
understand and use the model.

Figure 3: Model Packages and Dependencies.

The System Model is captured in four packages:

• User and System Requirements.
• The Mining Environment that contains the system.
• The System Realization package that describes the construction of the system.
• The System Operational package that describes the operation and use of the system.

pkg [package] About the Model [Model Dependencies]

«profile»
Requirements Profile

«modelLibrary»
SI Definitions

«modelLibrary»
QUDV

«modelLibrary»
Robominers Value Types

System Hierarchy

«modelLibrary»
MARTE

System Operational System Instances

System Control

System Behaviour

Requirements

«profile»
Architecture Profile

Mining Environment

«import»

«import»

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 12 / 58

The realization of the system is described in five packages:

• The System Hierarchy that describes the structural elements and relations in the system.
• The System Behavior that describes behavioral aspects of the system.
• The System Control package that describes the software and control mechanisms.
• The System Instances package that describes the specific robots that are built.
• Finally, the Module Library contains elements that are used transversally in different subsystems.

2.2. Stakeholders and Viewpoints
The ROBOMINERS System Model shall address the needs of all project stakeholders identified in the
requirements specification process. This identification of stakeholders is important to present the
system architecture model in ways that are adequate for the different stakeholders (ISO, 2011). These
stakeholders are used to define different viewpoints that are used to organize the model.

The following table shows the Stakeholders and Viewpoints relationship matrix.

Figure 4: Stakeholders and Viewpoints.

System stakeholders are grouped into five categories:

• EC Stakeholders are stakeholders associated to the EC.
• Project stakeholders include the main stakeholders concerned about the execution of the

project.
• System builders are stakeholders involved in the construction of the robots and mining systems

in the project.
• System users are stakeholders involved in the operation and exploitation of the system
• External stakeholders are external entities that contribute general requirements associated to

the potential impact of the technology.

pkg [package] Stakeholders and Viewpoints [Stakeholders and Viewpoints]

Stakeholder-Viewpoint.png

Use Alt-9 to see the relationship matrix in EA.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 13 / 58

2.3. Common Model Resources
There are some common resources that are used throughout the model:

• Model libraries. In the present status of the model, the only library is the QUVD standard library
used to capture quantitative aspects in the model (physical magnitudes, quantities, unities, etc.)

• SysML profiles. These are collections of specific resources –metamodel elements- that help
better capturing concrete aspects of the system model. We have developed two profiles for the
project: 1) a requirements profile to properly capture the different classes of requirements we
have and a 2) an architecture profile to label the core architectural elements of the system
(agents, nodes and functions).

2.3.1. QUDV Library

Figure 5 shows a SysML Block Definition diagram in package 'QUDV' that is used to avoid
misunderstanding concerning the interpretation of numeric values in the system/model elements.

Figure 5: QUDV Library for handling magnitudes and quantities.

The QUVD library is defined in the SysML specification (OMG, 2019) and is used to capture quantitative
aspects in the model (physical magnitudes, quantities, unities, etc.). For any system model, a solid
foundation of well-defined quantities, units and dimensions system is very important to reduce risks.
Properties that describe many aspects of a system depend on it. Such a foundation is a team-wide
shareable resource that can be used by all partners in a consistent way.

bdd [model library] QUDV [QUDV]

QuantityKind

ConversionBasedUnit

DerivedQuantityKind

DerivedUnit

Dimension

GeneralConversionUnitLinearConversionUnit AffineConversionUnitPrefixedUnit

QuantityKindFactor

SimpleQuantityKind

SimpleUnit

SystemOfQuantities SystemOfUnits

Unit

UnitFactor

Prefix

0..*

0..*

0..*

0..*

measurementUnit

0..*

0..1 0..*

0..*
0..1

{redefines measurementUnit}

A_noQuantityKind_prefixedUnit

0..1
{redefines quantityKind}

0..*
{subsets quantityKind}

0..*

A_dimension_factor

0..*

0..*

specificUnit

0..*
{bag}

0..*

0..*

0..*

0..*

0..*

0..*

baseUnit

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 14 / 58

2.3.2. Architecture Profile

The specification of the Robominer software architecture implies the identification of fundamental
elements and their relations. After the specification of the Robot Operating System v2 (ROS2) as base
middleware for the system implementation it is necessary to build on it the transversal capabilities that
system architectural element will have.

The architecture profile is a shared resource that provides stereotypes for the different classes of system
core elements (esp. system agents, system nodes and functions).

Figure 6: System architecture profile.

These are the basic constructive elements of the software architecture that are used to provide
homogeneous capabilities across the model (note that the model is built and used by different partners).
These elements are:

• System Agent: The Robominer is a modular robot and as such it requires some level of module-
bound intelligence. The system agent provides this capability of “being part of” a Robominer
aggregate. Some of these agents will be passive, some active, and some will include reflective
capability.

• System Node: While the middleware selected for the Robominer software is the version 2 of

the Robot Operating System (ROS2) the node concept of this middleware does not fully address
the needs of the project (esp. concerning the metalevel to be developed in T4.5). A more
concrete and formal specification was in need to properly address the reasoning processes
required by the metacontroller.

SysML1.4::block «metaclass»
Class

+ isActive: Boolean

System Agent

+ PSAID
+ SAID

Active Agent

Pasive Agent

Reflective Agent

System Node

+ SNID

Function

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 15 / 58

• Function: Is the core element used to organize system capability and realization. This is
fundamental for the metacontrol aspect of the system.

2.3.3. Requirements Profile

The requirements profile provides stereotypes for requirements in the context of ROBOMINERS. This is
useful given the different nature of some of the requirements coming from the different project
stakeholders.

Figure 7: Requirements Profile.

The central content of the requirements profile is the identification of both the sources and natures of
requirements –stakeholders, domain and system- and the specific domains that address the different
RTD foci of the project.

2.4. Project Domains
The ROBOMINERS Project sits at a convergence point of several domains of research and technological
development:

• Special mineral deposits mining using selective strategies.

Mission Requirement

+ aspect: Mission Aspects

Stakeholder Requirement

+ stakeholder = user

«enumeration»
Mission Aspects

 Value
 Performance
 Safety
 Impact
 Life-cycle

SE Requirement

+ originator
+ priority: RequirementPriority
+ responsible

Contractual Requirement

+ reference

System Requirement

+ element

«enumeration»
RequirementPriority

 Must
 Shall
 May
 None

Domain Requirement

+ domain: Domains

Reference to
ROBOMINERS
contract section.

System element: subsystem,
component, part, etc. A SysML
block.

«metaclass»
Requirement

SysML1.5::requirement

«enumeration»
Domains

 Robotics
 Mining
 Autonomy
 Bioinspiration

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 16 / 58

• Underground bioinspired robotics.
• Autonomy and resilience by system adaptation.

Figure 8: Robominers Domain Overall View

These domains define contexts for understanding the issues related to the construction of the robotized
system. They establish different frameworks, business needs, system requirements, terminology and
methods that shall be harmonised is the pursue of a coherent system and strategy.

2.4.1. Mining Domain Context diagram

Figure 9 shows the Mining Domain Context diagram. This diagram shows the main elements that
surround the Robominer system from the prespective of mining operations.

The Robominer operates in a mine under the supervision of a human operator. The robot may interact
with other elements in the mine also under supervision of human operators.

The mine contains some orebody that contains the mineral ore of interest. The robot performs
excavation to extract this mineral ore using a selective mining strategy. The ore may suffer other
processes after extraction.

bdd [package] Project Domains [Robominers Domain Overall View]

«block»
Robominer System

Mine Operator
A

(from
Mining
Domain
Context)

Robot Operator

(from
Robotics
Domain
Context)

«external»
Mine

«Capability»
Resilience

«block»
Robot

«external»
Mining Ecosystem

«block»
Operation Station

«activity»
Selective Mining

(from Mining Domain Context)

«Capability»
Autonomy

System element

Core activity

External entity

System property

Legend

«block»
Support System

«activity»
Processing

(from Mining Domain Context)

performs

operates in

controls

uses

uses

according to

operates

uses

has

delivers ore to

operates

has

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 17 / 58

The selective mining activity addresses the needs of the mining ecosystem and the characteristics of the
orebody like veins, joints, etc.

Figure 9: SysML Block Definition diagram in package 'Mining Domain Context'.

The mining excavation operation may be performed in a dry frontal process but it may also have special
needs —i.e. special mining activities— for underwater, slope, shaft or drift mining.

The mine may also be actively operated by means of other specialised machinery that the robot system
may have a need to know about.

2.4.2. Robotics Domain Context diagram

The selective mining activity is performed by the Robominer System. The robot miner is one of the
elements that compose the system. The robot is operated by a human through an operator station. The
mine is also operated by a human operator.

The robot has some structural elements —body— and behavioral elements —controller— to perform
the system activities. The main activities considered so far are related to robot movement and
localization.

bdd [package] Mining Domain Context [Mining Domain Context]

Drift mining

«block»
Mineral ore

«block»
Orebody

Processing

Prospecting

Shaft miningSlope mining

«block»
Machinery

Underwater
mining

«block»
Project Domains::Robominer System

«external»
Mine

Mine Operator
A

«external»
Mining Ecosystem

«activity»
Selective Mining«activity»

Excavation

«activity»
Haulage

finds

operates

can be used on
can be used on

needs

performs

contains

operates in

follows

moves

uses

mines

performs

operates in

processes

extracts

can be used in

guides

according
to

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 18 / 58

Figure 10: SysML Block Definition diagram in package 'Robotics Domain Context'.

The excavation activity —maybe the most important one— is also performed by the robot and
fundamental for the mining domain.

2.4.3. Autonomy Domain Context diagram

Figure 11 contains a SysML Block Definition diagram related to the autonomy domain context. In
essence, this diagram describes that the autonomy-enhancement capability of adaptation is provided
by means of two mechanisms:

• Awareness: used by the robot system to observe the functional status of the system.
• Reconfiguration: used by the metacontroller to reorganize the robot system to address

disturbances.

These two mechanisms are the basis for the provide capabilities of autonomy, adaptation and resilience.

As an example, the diagram shows that the movement and localization capabilities described before are
realized as system functions and managed by the self-awareness mechanisms of the robot.

bdd [package] Robotics Domain Context [Robotics Domain Contex]

«block»
Project Domains::Robominer System

Function

«block»
Localisation

Function

«block»
Movement

«block»
Body

«block»
Robot

«Capability»
Autonomy Domain Context::

Resilience

Robot Operator

«block»
Operation Station

Mine Operator
A

(from
Mining
Domain
Context)

«activity»
Selective Mining

(from Mining Domain Context)

«activity»
Excavation

(from Mining Domain Context)
«block»

Controller

«activity»
Haulage

(from Mining Domain Context)

uses

performs

controls

operates

has

performs
has

performs

uses

performs

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 19 / 58

Figure 11: SysML Block Definition diagram in package 'Autonomy Domain Context'.

bdd [package] Autonomy Domain Context [Autonomy Domain Context]

«block»
Robotics Domain

Context::Body

«block»
Function

«block»
Robotics Domain

Context::Localisation

«external»
Mining Domain
Context::Mine «block»

Robotics Domain
Context::Movement

«Capability»
Resilience

«block»
Project Domains::Robominer

System
«activity»

Reconfiguration

«Capability»
Autonomy

«block»
Adaptation

«activity»
Awareness performs

has

performs

is-aware-of

is-aware-of

has

operates in

has

has

is-aware-of

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 20 / 58

3. REQUIREMENTS SPECIFICATION

Using the capabilities of the SysML language, the system model contains both requierements and cros-
cutting aspects (e.g. allocations). In this section we summarise the main results of the work done in
requirements specification and analysis,

Figure 12 shows the model packages that contain the identified requirements for the robominer system.
These requirements are related to different sources :

• Contractual requirements: Those stated in the technical annex. Beware that due to the
exploratory and TRL4 nature of the project some of these requirements are not mandatory for
the full-scale miner robot implementation but are demonstrated in laboratoy prototypes or
address considerations of longer horizon.

• User requirements: Related to the mining ecosystem and the use ot the robot for ore extraction.
• Operation requirements: Related to the behavior of the system during operation.
• Domain requirements: Related to the different RTD domains addressed in the project.
• System variations: In the ROBOMINERS project there will be several robot implementations that

are used to address specific aspects of the project. This package contains requirements that are
specific of any one of such implementations.

Figure 12: Requirements packages.

3.1. Use-case and Scenario-based approach
In order to identify the system requirements a use-case and scenario-based approach has been used.

Figure 13 shows the package structure used to organize the use cases that have been analyzed to
identify requirements.

pkg [package] Requirements [Requirements]

Contractual Requirements

Domain Requirements

+ Autonomy Domain Requirements

+ Bioinspiration Domain Requirements

+ Mining Domain Requirements

+ Robotics Domain Requirements

Operation Requirements

System Variations

+ RM1 Robot Requirements

+ RM2 Robot Requirements

+ RM2 Robot Simulation Requirements

+ RM1s Robot Simulation Requirements

User Requirements

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 21 / 58

Figure 13: Use cases packages in the requirements identification process.

As an example, Figure 14 shows one concrete use case related to the self-assembly of modular robots.
See the model to have a detailed view of all use cases.

Figure 14: Use Case diagram in package 'Self Assembly Use Case'.

pkg [package] Use Cases [Use Cases]

Fault Tolerance Use Case

Narrow Spaces Operation Use CaseNavigate the mine Use Case Ore Production Use Case

Reconfiguration Use Case

Self Assembly Use Case

Electric Power Supply Use Cases Hybrid Autonomy Use Case

uc [package] Self Assembly Use Case [Self Assembly Use Case]

Self Assembly

Self Assembly

External Monitorization Operator

Arrange position and
orientation

Teleoperation
Self Lock

Multicoupling

Power Exchange

«include» «include»

«include»

«include»

«include»

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 22 / 58

See the system model for details concerning the concrete requirements identified so far. See also Annex
1: Scenarios for a textual, more readable description of some concrete scenarios in these use cases that
have been used to further identify system functions and define the system architecture.

3.2. System Variations Requirements
As said before, the ROBOMINERS Project will implement several robot systems (both real and simulated)
to address the different needs of the project. These systems are system variations that derive from core
models and assets. The requirements identified will be addressed in these system variants.

In the present situation, three + three variations (three robots, three simulations) have been identified:

• RM1: a full-scale mining robot able to operate in underground flooded environments.
• RM2: a small-scale robot used to investigate reconfiguration strategies for augmented

autonomy and resilience.
• RM3: a small-scale robot used to investigate movement and localization strategies.

These three robots will have three simulated counterparts (RMSx). The need for simulations respond to
different classes of needs:

• Some capabilities will be demonstrated in simulation. For example, the RM1 physical
reconfiguration may not be demonstrated in the full-scale robot due to the limited budget (RM1
parts are expensive elements).

• There is a need of having experimental platforms —e.g. for controller development— before
the physical robot is built due to the concurrent activity in the different workpackages.

Figure 15 below, shows just one of the requirements diagrams available in the system model: the RM1
Mechanical Requirements for the full-scale robot.

Figure 16 shows some of the domain requirements for the RM2 robot. This is a small-scale robot that is
to be used in the development of adaptation strategies by reconfiguration.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 23 / 58

Figure 15: SysML Requirements diagram in package 'RM1 Mechanical Requirements'.

req [package] RM1 Mechanical Requirements [RM1 Mechanical Requirements]

«Domain Requirement»
No Return Lines

domain = "Robotics"
id = "RM1REQ9"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The powertrain shall have no return lines. The
water is taken from and returned to the mine."

«Mission Requirement»
Above Water

aspect = "Performance"
id = "RM14"
priority = "Shall"
stakeholder = "Builder, Operator"
text = "The robot miner shall be capable of
operate above water."

(from Operation Requirements)

«Domain Requirement»
Open Loop Hydraulics

domain = "Robotics"
id = "RM1REQ2"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The powertrain of the robot shall be based on an
open loop water hydraulic system, with no return lines."

«Domain Requirement»
Water Hydraulics

domain = "Robotics"
id = "RM1REQ1"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The robot shall use water as a pressure medium to
transmit power to several actuators."

«Domain Requirement»
Hydraulic Muscles

domain = "Robotics"
id = "RM1REQ3"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "Hydraulic muscles shall be used for actuating limbs
and manipulators."

«System Requirement»
Redundancy

element = "Module Subsystem"
id = "RS1"
priority = "Shall"
text = "Key subsystems of the robot miner shall be designed with
redundancy to enable reconfiguration and change of faulty parts."

(from Autonomy Domain Requirements)

«Domain Requirement»
Parallel Valves

domain = "Robotics"
id = "RM1REQ7"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The hydraulic muscle configuration shall have
multiple control valves in parallel to allow redundancy."

«Domain Requirement»
Digital Hydraulics

domain = "Robotics"
id = "RM1REQ6"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The water hydraulic control valves used to control
hydraulic muscles shall be digital hydraulic valves."

«Domain Requirement»
Multicoupling

domain = "Robotics"
priority = "Shall"
responsible = "RD7"
text = "The robot miner shall have multicoupling systems to
assemble modules."

(from Mechanical Requirements)

«Domain Requirement»
Hydraulic Power Line

domain = "Robotics"
id = "RM1REQ4"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The multicoupling shall connect hydraulic power lines
of two robot modules."

«Domain Requirement»
Water Supply System

domain = "Robotics"
id = "RM1REQ8"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The robot shall have a water supply system for
operation without water available."

«Domain Requirement»
Operate in Dirty Water

domain = "Robotics"
id = "RM1REQ10"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "he hydraulic system shall be capable of using
water from the mine."

«Domain Requirement»
Water FIlter

domain = "Robotics"
id = "RM1REQ11"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The hydraulic system shall have a water
filtering system to use dirty water to operate."

«Domain Requirement»
Hydraulic Drivetrain

domain = "Robotics"
id = "RM1REQ5"
originator = "TUT"
priority = "Shall"
responsible = "TUT"
text = "The robot shall have a hydraulic drivetrain."

«deriveReqt»

«deriveReqt»

«deriveReqt»

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 24 / 58

Figure 16: SysML Requirements diagram in package 'RM2 Domain Requirements'.

req [package] RM2 Domain Requirements [RM2 Domain Requirements]

RM2 Research Prototype

domain = "Robotics"
id = "RM2REQ1"
originator = "UPM"
priority = "Shall"
responsible = "UPM"
text = "A research platform shall be developed to explore autonomy concepts such as system adaptation, modularity, reconfiguration, spare usage, etc."

«Domain Requirement,System Requirement»
RM2 Modularity

domain = "Robotics"
id = "RM2REQ1.2"
originator = "UPM"
priority = "Shall"
responsible = "UPM"
text = "The robot shall have a modular structure."

«Domain Requirement,Stakeholder Requirement»
RM2 Adaptation

domain = "Autonomy"
id = "RM2REQ1.1"
originator = "UPM"
priority = "Must"
responsible = "UPM"
stakeholder = "user"
text = "The robot shall be able to adapt to disturbances."

«System Requirement»
Reconfiguration

text = "The robot shall be able to
reconfigure."

«System Requirement»
Controller Tuning

text = "The robot shall be able to
self-tune its controllers."

«System Requirement»
Behavior Learning

text = "The robot shall be able to
leang adpative behaviors."

«Mission Requirement,Stakeholder Requirement»
RM2 Capability

id = "RM2REQ1.3"
stakeholder = "user"
text = "The robot shall be able to extract laboratory ore."

«System Requirement»
Module Heterogeneity

text = "Modules can be heterogeneous."

«System Requirement»
Module Energy Modularity

text = "Modules can have own sources of energy."

«System Requirement»
Module Intelligence Modularity

text = "Modules can have own sources of intelligence."

«System Requirement»
Spares

text = "Some modules may be available as spares."

«Mission Requirement»
Ore Sensing

stakeholder = "user"
text = "The robot shall be able to see
the ore."

«Mission Requirement»
Ore Approach

stakeholder = "user"
text = "The robot shall be able to
move to the ore."

«Mission Requirement»
Ore Extraction

stakeholder = "user"
text = "The robot shall be able to
extract the ore."

«requirement»
Mechanical Modularity

text = "Modules can be mechanically attached/detached
from other modules."

«deriveReqt»

«deriveReqt»

«deriveReqt»

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 25 / 58

4. SYSTEM SOFTWARE ARCHITECTURE

The system realization section of the system model describes the realization of the robot systems
implemented in the project (RM1, RM2, etc.). Figure 17 depicts the major system elements that
compose the Robominer system in a hierachical diagram.

Figure 17: Major system elements in the Robominer System.

This deliverable however only addresses the specification of the software architecture for the robot
controllers. In this sense, it contains just the identification of major system elements and the
identification of interfaces between them. These software elements are deployed over computing
platforms that are parts of the different subsystems shown at the lower layer of Figure 17.

The system software elements described in this chapter are related to two clasess of software:

1) the common assets used across the system elements,
2) the functional assets identified in the use cases and scenarios analysis.

The packaging of the software (see Figure 18) is organised to address both the needs of the technical
system implementation and the workpackage structure of the project.

bdd [package] System Hierarchy [Root System Hierarchy]

«block,external»
Mining Ecosystem

«block»
RoboMiner System

«block»
Surface Segment

«block»
Tether

«block»
Underground Segment

«block»
Support Subsystem

Operator

«block»
Robot Operation

Subsystem

ports
 Port20

«block»
System Operation

Subsystem

ports
 Port19

«block»
Slurry Transport

«block,external»
Mine

«block,external»
Slurry Processor«block,external»

WaterSource

«block,external»
PowerSource

«block»
Run-time Simulator

«block»
Robot

«block»
Mine Sensors

«block»
Spares

manage use
use

2..*

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 26 / 58

Figure 18: Software packages for control software assets.

pkg [package] Software [Software Packages]

Infrastructure Software

Operation Software

Robot Software

Auxiliary SoftwareMetacontrol Software

System Software

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 27 / 58

Figure 19: Full system hierarchy.

4.1. Common Assets
The common assets are software elements that are used across all the subsystems of the system
hierarchy (Figure 19). There are two major classes of common assets:

• System Core Software: This is Robominers-specific software used across the different system
elements to provide common capability needed for the operation of the system. This is software
developed in the project.

• Platform software: Runtime software in computing platforms that support the system
deployment. This is open-source software already available outside the project.

4.1.1. System Core Software

4.1.1.1. System Agents and Nodes

The Robominers software system will be composed by a set of interacting System Nodes (SNs) managed
by System Agents (SAs).

bdd [package] RM1 System [RM1 System Hierarchy Overview]

«block»
RoboMiner System

«block,external»
Mine«block,external»

Mining Ecosystem

«block,external»
Slurry Processor

«block,external»
WaterSource

«block,external»
PowerSource

«block»
Surface Segment

references
 : Operator[2..*] {unique}

«block»
Underground Segment

«block»
Mine Sensors

«block»
Robot

«block»
Spares

«block»
Support Subsystem

«block»
System Operation

Subsystem

«block»
Robot Operation Subsystem

System Operator

«block»
Data Handling

Subsystem

«block»
External Interface

«block»
System Operation

Station

«block»
Tether

«block»
Slurry Transport

Robot Operator

«block»
Robot Operation

Station

«block»
Electric Power

Supply

«block»
Support System

Control

«block»
Slurry Pumping

Station

«block»
Water Hydraulic

Powerpack

«block»
Body Module

properties
 BCS : Electronics Subsystem
 BES : Electric Subsystem
 BMS : Mechanical Subsystem
 BOS : Ore Subsystem
 BWS : Water Subsystem

«block»
Production Module

properties
 ExS : Excavation Subsystem
 OSS : Ore Sensing Subsystem
 SLAM : Localization and Mapping

«block»
Support Module

properties
 EPS : Electric Power Substation
 PCTS : Power, Comms and Transport Substation
 SPS : Slurry Pumping Substation
 WHS : Water Hydraulics Substation

Surface

Underground

Legend

manage

1

feed

*

use

manage

tether

0..1

1

0..1

1

1

manage

*

1

feed

*

uses

1..*

1

manage

uses

feed

use

feed

tether

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 28 / 58

SNs encapsulate the software functions needed for the different activities of the system (e.g. moving,
drilling, etc.) and provide a common management interface and a specific operation interface. SNs are
passive and will be managed by a System Agent (SA). SAs provide capabilities for distributed cognitive
decision making that synergically contribute to the system operation. SAs endow robot modules with
the required capabilities for self-management and collaboration with other modules (the ROBOMINERS
robot is a modular system).

The computing hardware for robot controllers will be a distributed network of computers. Each one
fitting the needs and constraints of its function and deployment conditions. For example, each leg may
have its own computers for local autonomy and hierarchical control. SNs will be deployable on two
different classes of computing platforms: base and reduced (e.g. Olimex/Linux systems or smaller OSless
microcontrollers). SAs will need a base computing platform capable of supporting ROS2 middleware.

Reduced computing platforms shall provide some kind of connection also available in the base platform
that runs the SA or a Node Adapter. A Node Adapter is an SA that runs on a Base Platform managing a
SN that runs on a Reduced Platform.

Figure 20: System Core Software Assets.

Active SAs implement an epistemic control loop to pursue goal-directed action using ontology-based
representations of the mission, the robot and the environment to: 1) perform mission-oriented directed
activity, and 2) address contingencies. The details of the System Agent design are to be developed as
part of the activity in T4.2 – T4.6 but some considerations concerning its desired capabilities are
summarised in Figure 22 and section 4.3 below. Note that these capabilities are transversal to mission-
specific ones (like moving or cutting rock). These are described later in section 4.2 Functional Assets.

bdd [package] System Core Software Assets [System Core Software Assets]

«block»
System Agent

parts
 : Agent Engine

references
 : System Agent

«block»
Base Computing

Platform

«block»
Computing Platform

«block»
Reduced Computing

Platform
«block»

Node Adapter

«block»
System Node

«block»
Function

«block»
System Agent Hierarchy

*

1

parent

encapsulate

deploy

part of

deploy

+adaptee

1

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 29 / 58

Reflective SAs (see Figure 6: System architecture profile.) have the capability of self-reflection and
control (metacontrol). This enables the recovery behavior by runtime adaptation to overcome
disruption.

The functional state of any function-allocated subsystem is governed by the same state machine. The
mission of the metacontrol system is to:

• drive this machine —using the self-awareness function— and
• try to maximise functionality (i.e. return to Nominal Operational State) —using the self-

reconfiguration functionality.

Figure 21: System Agent state machine.

The SA state machine generalises the ROS2 node lifecycle to specifically address 1) diminished function
states and 2) recovery from disruption.

stm [package] System State Machine [System Agent State Machine]

Initial

Nominal Operational State

Heightened Awareness Operational
State

Non-Functional Disrupted State

Final

Partially Functional Disrupted State

Functional Disrupted State

Accepted Diminished State

Decommissioned

Recovering State

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 30 / 58

Figure 22: System Agent functional elements.

4.1.1.2. Ontologies

System knowledge is captured in knowledge bases for runtime reasoning. These knowledge bases are
being built using formal ontology languages. The ROBOMINERS ontologies are a set of formal
specification of concepts that are used to create knowledge bases for the metareasoner to represent
and reason about system state and alternate system configurations.

While it is possible to represent and reason about any of the aspects of the system, the current approach
is the development of a modular ontology to capture four system aspects (Figure 23):

• Movement — the movement of the robot in the mine using its locomotion system.
• Mining — the extraction of ore using the extraction tool.
• Mission performance — the achievement of the objectives of selective mining.
• Adaptation — the adaptive response to disturbance by means of a metacontroller.

bdd [block] System Agent [System Agent Elements]

«block»
Perception

«block»
Action

«block»
Working Model

«block»
Agent Activity

«block»
Action

Determination

«block»
Long Term Learning

«block»
System Integration

«block»
Inner Action

«block»
Outer Action

«block»
Environment
Perception

«block»
Self Perception

«block»
Others Perception

«block»
Collective Perception

«block»
Teaming-up

«block»
Communication

«block»
Model Sharing

«block»
Team Action

«block»
Action Monitoring

«block»
World Model

«block»
Self Model

«block»
Team Model

«block»
Model Reasoner

«block»
Anomaly

Identification

«block»
Action Teaming

«block»
System Ontology

«block»
Situation

Evaluation

«block»
Mission

Executive

parent

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 31 / 58

Figure 23: System ontologies to support reasoners.

4.1.2. Platform Software

Platform software is third party software used in the project to build and deploy the robot control
system. This software includes operating system software, core runtime libraries and communications
software for distributed application construction (Figure 24).

Figure 24: Platform software.

bdd [block] System Ontology [System Ontology]

«block»
Metacontrol

Ontology

«block»
Movement Ontology

«block»
Mission Ontology

«block»
Mining Ontology

bdd [package] Platforms [Computing Platforms]

«block»
Base Computing

Platform

«block»
Middleware

«block»
Connection

«block»
Computing Platform

«block»
ROS2

«block»
Reduced Computing

Platform

«block»
OS

«block»
Linux

use

1..*

1

1..*

1

support

1..* 1..*

comply

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 32 / 58

4.1.2.1. Computing Platforms

The ROBOMINERS software assets (system agents, system nodes and functions) will be deployed on two
different classes of computing platforms:

• Base computing platform: any computing platform capable of running a full-fledged Linux
distribution with real-time extensions and a complete ROS2 capability (e.g. Olimex A64-
OLinuXino-1G SBCs).

• Reduced computing platform: any embedded computing platform that is not capable of running
a real-time full-fledged Linux (e.g. a small microcontrollers like the ESP32).

System Agents (SAs) will need a base computing platform capable of supporting ROS2 middleware.
System Nodes (SNs) need a simpler, reduced platform. Reduced computing platforms shall provide
some kind of connection also available in the base platform that runs the SA or a Node Adapter. A Node
Adapter is an SA that runs on a Base Platform managing a SN that runs on a Reduced Platform.

4.1.2.2. Middleware

For the system integration, we will use ROS2/DDS middleware because it provides the needed
capabilities for the controller and enables the use of packages available in the ROS ecosystem.

The Robot Operating System (ROS) is a set of software libraries and tools for building robot applications.
From drivers to state-of-the-art algorithms, and with powerful developer tools, ROS has resources that
we can leverage in the implementation of the robot control system. And it is open source, that swiftly
aligns with project guidelines.

The substrate middleware of ROS2 is DDS, an open specification of data push middleware from the
OMG. DDS provides a publish-subscribe transport that easily matches ROS1’s publish-subscribe topic
model. DDS uses the “Interface Description Language (IDL)” as defined by the Object Management
Group (OMG) for message definition and mappings to network neutral formats enable the serialization
of the data. Recent DDS implementations have also request-response style middleware, which matches
ROS’s service system (called DDS-RPC). Annex 2 uses the ROS2 interface definition language to specify
some core interfaces of the system.

While we could use just DDS and not use ROS2 for the implementation of the robot controllers, the
ROS2 distribution includes also tooling and reusable robot software assets that we can use in the
engineering of the controllers. For this reason, we will use ROS2 (and possibly the deeply embedded
variant microROS). For detailed information concerning this middleware visit https://design.ros2.org/.

4.2. Functional Assets

4.2.1. Robot Software

The robot embedded controller is a mission-oriented software. It controls the robot to fulfil the selective
mining mission that is the core objective of the ROBOMINERS project. In this sense, the robot software
controls three fundamental activities:

• Sensing: Perception of the environment in terms of geometry and mineralogy.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 33 / 58

• Movement: Actuation on the propulsion system both to go to certain locations and also
movement during mining operation.

• Mining: Extraction of ore from the ground and manipulation of extracted materials.

Each of this software elements require specific functional capabilities. Additionally, all subsystems
participate in the whole system and require core capabilities that enable this participation. The diagram
shown in Figure 25 shows some of these capabilities.

Figure 25: Robot Software.

4.2.2. System Operation Software

While the robot shall operate autonomously, it does so under the supervision of one or more human
operators that also handle other mine systems besides the robot. Figure 26 shows some of the software
elements involved in this high-level operation. The detailed design of these systems will be done in the
future.

bdd [package] Robot Software [Robot Software]

«System Node»
Extraction Control

«System Node»
Localization and

Mapping

«Active Agent»
Mining Agent

«block»
Mining Software

parts
 : Mining Agent
 : Extraction Control
 : Mining Planning

«System Node»
Movement Control

«Active Agent»
Movement Agent

«block»
Movement Software

parts
 : Localization and Mapping
 : Movement Agent
 : Movement Control
 : Navigation Planning

«System Node»
Navigation Planning

«Reflective Ag...
Robot Agent

«block»
Sensor Software

parts
 : Sensor Fusion
 : Sensor Processing
 : Sensors Agent

«Active Agent»
Sensors Agent

«block»
Robot Software

parts
 : Mining Software
 : Movement Software
 : Sensor Software

«block»
Sensor Fusion

«block»
Mining Planning

«block»
Sensor Processing

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 34 / 58

Figure 26: System operation software.

4.2.3. Auxiliary Software

This is software related to the operation and control of auxiliary elements at the system level. This
includes water and power supplies, slurry management and tether control.

Figure 27: Package 'Auxiliary Software'.

bdd [package] Operation Software [Operation Software]

«block»
Mine Simulator

«Active Agent»
Operation Agent

«block»
Operation Software

parts
 : External Interface
 : Operation Agent
 : Robot Operation Software
 : System Operation Software

«Active Agent»
Robot Operation

Console

«block»
Robot Operation Software

parts
 : Robot Twin
 : Robot Operation Console

«block»
Robot Twin

«block»
System Operation Software

parts
 : Mine Simulator
 : System Operator Console

«Active Agent»
System Operator

Console

bdd [package] Auxiliary Software [Auxiliary Software]

«System Node»
Electrical Support

Control

«System Node»
Pumping Control

«Active Agent»
Auxiliary Systems

Agent

«Pasive Agent»
Tether Control

«Active Agent»
Transport Control

«System Node»
Water Support

Control

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 35 / 58

4.3. System Control

The system control strategy is a dynamic federation of system agents that follow the system agent
hierarchy shown in Figure 28. Dynamicity comes from the need of overcoming disturbances that will be
managed by means of system modularization and distributed control.

4.3.1. Overall control structure

The top of the hierarchy is the Robominers System Agent that governs the state of the whole system
(robot, operation system and auxiliary systems). Each of these subsystems have a managing agent that
has its own goal and collaborates with upper level agents in the fulfilment of higher-level goals.

Figure 28: System Agent Hierarchy.

4.3.2. Behaviour generation and control

The SA overall control mechanism (see SA state machine in Figure 21) shall use a callback mechanism
to register the functions used to implement the states’ functionality. The nominal operational state is
obviously the most important one, and the base strategy is to use a behaviour tree to govern the
nominal activity of each agent.

At the time of this writing, for the implementation of the SA core functionality we will use:

• The ROS SMACC state machine library. SMACC is an event-driven, asynchronous, behavioral
state machine library for real-time ROS (Robotic Operating System) applications written in C++,
designed to allow programmers to build robot control applications for multicomponent robots.

• The ROS BehaviorTree.CPP behaviour tree library. BehaviorTree.CPP is an open C++ library that
provides an extensible framework to create behaviour trees in ROS. It was designed to be
flexible and fast, properties that match our needs.

bdd [package] System Control [System Agent Hierarchy]

«Reflective Ag...
Robot Agent

«Active Agent»
Robominers System

Agent

«Pasive Agent»
System Database

«Active Agent»
Auxiliary Systems

Agent

«Active Agent»
Operation Agent

«Active Agent»
Sensors Agent

«Pasive Agent»
Tether Control

«Active Agent»
Transport Control

«Active Agent»
Robot Operation

Console

«Active Agent»
External Interface

«Active Agent»
Movement Agent

«Active Agent»
Mining Agent

«Active Agent»
System Operator

Console

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 36 / 58

Figure 29: A move-to-location behavior tree visualized using the Groot tool.

4.3.3. System Metacontrol

Besides the nominal activity of the system modules using the described system behaviour generation
strategy, the Robominer has a transversal capability for adaptation in the case of disturbances pushing
the system beyond the nominal state. The disturbance handling states of the SA state machine are
managed by the metacontrol software (see Figure 30).

Figure 30: Metacontrol Software.

The metacontrol software is used by reflective agents to implement a self-awareness control loop. This
metacontrol system is powered by a formal reasoner (we have selected the Pellet reasoner for the
current work). The metacontroller performs runtime reasoning using a module self-model that enables
the diagnosis and inner action necessary to transition from disturbed states back to nominal operational
state (or a diminished functionality state if full recovery of function is not possible).

bdd [package] Metacontrol Software [Metacontrol Software]

«block»
ROS2

Instrumentation

«block»
Self Model

«block»
Model Reasoner

«block»
Inner Action

«block»
Self Perception

«block»
Metacontrol Software

parts
 : Diagnosis
 : Inner Action
 : Model Reasoner
 : Robot Instrumentation
 : ROS2 Instrumentation
 : Self Agent
 : Self Model
 : Self Perception

«block»
Diagnosis

«Reflective Ag...
Self Agent

«block»
Robot

Instrumentation

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 37 / 58

The formal ontologies described before are used in the construction of the knowledge bases that
constitute the self model. The system-related knowledge base is structured at three abstraction levels
to allow reusability and handling of different system agents:

• Teleological metamodel: Common baseline, it coordinates the system mission.
• Domain ontology: Knowledge relative to the main objective of a sub-system, e.g., navigation for

the locomotion sub-system or rock mining for the extraction tool.
• Agent individuals: Information relative to the concrete implementation of an agent.

The functional system instrumentation needed to couple the metacontroller with the underlying
systems —meta sensors and actuators— will use ROS2 introspection mechanisms as far as possible to
reduce the needs for tailoring reused ROS packages from the ROS ecosystem.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 38 / 58

5. SYSTEM BEHAVIOR
The development of implementations of behaviors will be guided by the concrete needs of the target
operational scenarios (the scenarios that will be used in the system demonstration and evaluation). The
analysis of scenarios will help identify the specific functions needed for robot behavior realization and
the identification of interfaces and data types.

The objective of the control system is to make the miner robot behave as needed. To analyse this
behaviour, we shall describe the operational scenarios of interest –the focus of robot activity– in a way
that could be understood by every other project stakeholder.

Given the fact that the project vision points to a real miner robot, the scenarios described below are
described in terms of a general miner robot. Concrete demonstration of the scenarios will be analysed
later (see section XXXX below). Note that in the project there are several robot implementations.

Some of the structural/functional descriptions in the SysML system model are quite general –they apply
to different robots– but others may be specific of concrete ones. For example:

• The RM1 robot –the full-size robot– is able to perform real mineral extraction.
• The RM1 robot can operate under water.
• The RM2 robot -a modular, small scale system- can perform physical reconfiguration.

In the same way, the scenarios described below do not apply to all robots –real or simulated– developed
in the project. Besides the concrete robots we refer to, some project activities with specific research
interests may be carried out in test pools, mock-up environments or simulations, not necessarily in a
real mine.

5.1. Scenario 1: Go to Location

The robot is located somewhere in the mine and shall go to another location (e.g. to the ore extraction
front). This happens through free space.

This scenario may develop after the robot being thrown in modules to the deposit via a large diameter
borehole (TA description; in this case, Scenario 6: Self-assemble, will ensue), or may happen after a
robot repair, or as a result of a higher-level mine operations decision to change the extraction front
where the robot is working.

Once the robot is properly assembled, it should prepare itself for the operation. Systems shall be
powered-up and started until reaching an operational state.

When in an operational state, the robot may receive orders from the surface segment (or from another
robot or system agent?) to perform some mission. Mission start is then ordered from the operator
console.

All robot movements within the mine will be recorded on a mine map (a master version of which will be
held in the server for access and use by the human operator) and will update that mine map.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 39 / 58

There are two important components of the Mine Map: (1) a geological model of the deposit and its
surrounding rock, and (2) a geometric map of existing and planned mine workings (tunnels, shafts,
ramps, stopes, etc.)

Whether in an old or new mine, there will be information on

1) the 3-dimensional geology (in a geological model of the mineral deposit) and
2) the 3-dimensional map of workings, existing or planned.

The geological model will be derived by numerical modelling methods from data that are obtained from
any existing mine workings, drill holes, or other similar sources including geophysical exploration. More
detailed description of the deposit modelling is to be included in deliverable D6.6.

First, the robot shall use the sensor systems to establish an initial localization and start mapping the
mine. While the initial position of the robot may be known and provided by the human operator, it may
also be the case that it is not explicitly stated or included in the mine map. Besides this, the robot needs
to bootstrap its self-locating capability.

The geological (deposit) model is generally derived from data with small resolution (5 - 10 metres)
compared to the robot’s dimensions, so, at the beginning, it will be unable to provide precise positioning
information for the robot to start mining, but only generalised guidance. As robotic mining proceeds,
the model will be progressively updated to improve its local precision.

As concluded in the deliverable D1.1 Report on sensor performance and navigation strategies for mining
environments, robotic localization and mapping are traditionally based on visual perception. However,
in ROBOMINERS one of the challenges is operating in the mining environment blindly. This means
following the ore using geophysical methods, sensing the surrounding environment's physical
properties and objects or obstacles in the close vicinity. The mapping and localization may be based on
proprioception (pressure sensors and IMU (Inertial Measurement Units)), electromechanical whiskers,
and using geophysical sensing (XRF, conductivity and induced polarization). These types of data will be
used to update and improve the geological model of the deposit (D6.6).

Ore sensing capability is especially relevant when performing the ore extraction (as part of the selective
mining capability; see Scenario 2: Mine the ore) but is also relevant in any movement because it can
incrementally improve the map info, and can be used for localization purposes

Note that a mine map contains several classes of spatially distributed information: mine geometry –esp.
actual mine geometry but it may also contain planned future geometry-, mineral composition, flowing
currents, etc. The information is gathered by the robot but also from other past and present sources.
For example, think about a possible concrete go-to scenario concerning systematic ore mapping in an
old mine.

The map can contain several geomechanical and geophysical aspects (see D.6.6) that shall be aligned
and incrementally included in the map:

• Lithology of host rock and ore materials, mineralogy, geochemistry, physical properties
• Rock structure: e.g., joints, variation in rock strength, etc. affecting stability of mine workings
• Presence of hazards such as those identified in deliverable D5.2

Note that the map is not static nor just scalar:

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 40 / 58

• It is incrementally updated (by all information sources).
• It can contain moving entities (e.g. moving water). The map may contain velocities.

Note that a mine map may contain present, past, and future content. For example, an exploitation plan
for the mine as created by a mine engineer (a mine design, a mine layout).

If a mining strategy or mine layout is adopted which includes 'caving', the ore is not immediately
transported to surface but forms a temporary heap or stockpile within the mine, usually below or
adjacent to the cutting face (as in shrinkage stopping: deliverable D2.2, section 4.1.4). In such a case,
this temporary storage needs to be recorded in both the geometric mine map and the geological model.

These aspects are to be used in the decision-making concerning robot operations: by the robot itself,
by system-level planners or by human operators. The mine map is shared at a system level. For example,
the deposit map may be used by a planner for systematic extraction or by the robot controller for local
direction control (e.g., when performing an autonomous bioinspired mining strategy).

The operator or the meta-controller can oversee the robot state and the map that is being generated
to monitor or intervene if the data produced has too much deviation. Once the robot has produced a
map, it shall locate the most promising mineral vein to start Scenario 2: Mine the ore when operating
in fully autonomous mode.

The decision to move to this place may be full autonomous –the robot decides- or following a mixed
initiative approach –it is the robot-operator pair who decides. We can establish a set of scaled autonomy
strategies from fully teleoperated to fully autonomous and decide what to use in a concrete situation.

The robot moves from its location to the cutting front using its navigation methods. An operator
monitors the operation. During movement, the robot updates the map. During movement, the robot
avoids obstacles. This procedure may be entirely operator-controlled or may be semi-autonomous, with
the operator identifying intermediate "way-points" between the current robot position and its
destination, but the robot making decisions on how to travel between those points.

The scenario ends when:

• The Robot reaches the target location (e.g. a cutting front or a specific destination).
• The Robot decides it cannot reach the location.
• The Operator stops the mission.

5.1.1. Scenario 1 Variants

There may exist specialised, specific variants of the go to location scenario:

• Robot enters the mine. For example, through a horizontal or ramp entry instead of a borehole.
• Robot exits the mine.
• Robot leaves cutting front to go to a storage/tether/maintenance area.
• Robot leaves cutting front to go to another cutting front.
• Robot escaping a collapse.
• Borehole Down: The robot enters a +/- vertical borehole which reaches the ore body, and then

descends through borehole and starts mining.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 41 / 58

5.1.2. Scenario 1 Functions

• Sense ore – Get map of ore
• Sense wall – Get map of wall to determine free space
• Sense obstacle – Get map of obstacle to determine free space
• Navigate – Establish desired trajectory in free space
• Move – Follow trajectory
• Set mission – Establish go to location mission parameters
• Locate – Determine robot location on mine map
• Update Map – Update mine map using sensed information

5.1.3. Scenario 1 Entities

• Robot
• Mine
• Location – 6D location of all robot elements.
• Motion unit – The robot subsystem that can move the robot
• Sensor data – Information obtained from sensors
• Mine Map – 3D representation of the mine
• Mission – Specification of goals, resources, and constraints in the go to location mission
• Operator – Human operator in surface station
• Obstacle – Object that may interfere with movement path
• Free space – Space that the robot may move through without digging

5.2. Scenario 2: Mine the ore

Once the robot is at the extraction front, it realizes the main value of the project: selective mining3. The
system has to identify the mineral vein or other deposit type, to extract rock in the right direction.

Choosing the right digging direction can be made using a path planner based on the geophysical sensor
information and other parameters such as tool wear, robot energy, risk, etc. and normally will be largely
dependent upon a mine layout design that has been specified in advance. This may be a conventional
mine layout or a bio-inspired mine layout, selected from a very wide range of possible layouts such as
those described in deliverable D2.2. Mine layout plans are relevant for deciding where to dig (e.g. fully
autonomous operation shall not dig-out a pillar).

As the robot collects detailed local information on mineral grades, rock strength, etc., the mine layout
itself may be progressively modified, and the planned future workings may be updated in the Mine Map.
Deliverables D6.6 and D6.7 give more detailed accounts of the algorithms and mining methods needed
for selective mining.

Then the system must establish a steady and stable position to start the production tool. Once
extraction starts, the extracted material is comminuted, moved to the rear of the robot to convert it

3 Note that the selective mining concept can be applied to the concrete act of mineral extraction (dig here or
there) but it can also refer to more high-level decision-making concerning the decisions related to mining at a
higher, ecosystem level (e.g. deciding if mining or not depending on cost of electricity).

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 42 / 58

into slurries (or slurrified and then moved to the back for pumping). This allows transport (such as
pumping) of the extracted material towards the surface base station.

During extraction, the robot is sensing the environment and also using the digestive sensing to get
information from the slurry about mineralogical composition. This information can be used both locally
and globally to both update the mine map and control the digging activity of the robot.

V-transport can be implemented in a variety of ways, that are out of the scope of the project. . However,
it will be taken into account in simulations).

The following figure (from D3.2) shows the processes happening during ore extraction:

Figure 31: Fundamental activity of the Robominer mining process.

During this process, the robot state is monitored by an operator and the meta-control module. In case
of contingency, the system may need to be reconfigured. This could be done autonomously or directed
by the operator, triggering Scenario 5: Reconfiguration.

This scenario ends when the robot stops by:

• Completing the mission (reaching a certain amount of rock, reaching a location).
• Ore vein extinguishes/is not profitable – robot stops and reports to operator
• Reaching an open space.
• Failure. Total or partial.
• Operator order.

5.2.1. Scenario 2 Variants

There may exist specialised, specific variants of the mine the ore scenario:

• Robot digs to create free space.
• Robot digs escaping a collapse.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 43 / 58

5.2.2. Scenario 2 Functions

• Plan dig – Establish a dig trajectory
• Produce – Dig with the tool to extract the ore
• Sense ore – Get map of ore
• Sense wall – Get shape of wall to determine tool operation
• Move – Follow dig trajectory
• Comminute – Reduce grain size
• Transport – Move comminuted material to slurrifying unit. Also called h-transport.
• Slurrify – Convert comminuted material into slurry
• Hoist – Move slurry to surface. Also called v-transport.
• Set mission – Establish mine the ore mission parameters
• Locate – Determine robot location on mine map
• Update Map – Update mine map using sensed information
• Sense mineralogy – Geochemical sensor of the mineralogical composition of the ore

5.2.3. Scenario 2 Entities

• Robot
• Mine
• Operator
• Extraction front
• Production tool
• Extracted material
• Ore moving unit
• Comminution unit
• Slurry
• Slurrifying unit
• Pumping unit
• Mine map

5.3. Scenario 3: Power assurance
During the robot operation, the robot may use hydraulics to power some subsystems, but other
subsystems must have an electric power supply. Handling of electric power is critical for all robot
operations (not only ore extraction or robot movement).

For example, to extend capability the robot may be operating at low-energy conditions. For this, a
change in how the robot is operating may collaborate to reduce energy consumption and hence extend
its energy autonomy. The authority for this mode setting may come from the operator who is
monitoring the operation or the robot meta-controller, that may inform the system that it should adapt
to the energy available to achieve some goals. This system change may imply involving Scenario 5:
Reconfiguration or may be based on simple parameterization of subsystems. The reconfiguration may
be done autonomously or aided by the surface operator.

Reconfiguration could target a change in robot and control parameters such as robot speed, sensor
updating rate, etc. to operate under not optimal but sufficient conditions. Besides, if the robot is

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 44 / 58

performing Scenario 2: Mine the ore, it can adapt the production tools parameters (e.g. to reduce power
peak consumption).

Furthermore, reconfiguration may also imply a large-scale change in the robot’s structural organization.
If a module does not have sufficient power –e.g. during navigation or material extraction– it can search
other modules with spare power. This power seek capability includes e.g. reaching a backup power
module or power transferring from other robot modules. In some cases, power assurance may require
to couple with another module.

In the long-term view, these attachments/detachments will be done autonomously or teleoperated by
the surface operator. In the framework of the project, this will imply a human performing the
reconfiguration in the physical prototypes (RM1 and RM2) while it could be automatic in computer
simulations. Once the robot is connected to a power supplier, it can recover its normal operation.

In this scenario the robot power monitor determines that the available local power is insufficient for the
planned activity –e.g. go to location or mine ore– and seeks an extra source of power. The robot finds a
spare, fully charged robot module in the mine map, goes to it, and uses the self-assemble capability to
incorporate the module.

The scenario ends when:

• The robot is back to the original situation with enough power to continue its mission.
• The robot cannot find an available power source that fulfills the requirements for the mission.
• The operator stops the scenario.

5.3.1. Scenario 3 Variants

• Ordered shutdown
• Go to recharge station

5.3.2. Scenario 3 Functions

• Monitor power status
• Predict/schedule power usage
• Find power source
• Share power

5.3.3. Scenario 3 Entities

• Robot
• Operator
• Robot devices
• Battery
• Power source
• Module

5.4. Scenario 4: Fault detection
To augment the robot autonomy, diagnostic methods must be implemented. The data produced by self-
diagnosis may be monitored by the surface operator and/or the meta-controller.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 45 / 58

During the robot operation -navigation phase, or material extraction phase- an observer control node
can be running. This observer could monitor the energy consumption, the reliability of the sensor
readings, control the production tool and navigation performance, etc.

The monitoring loop can find errors at a hardware level, software level, or in the communication
between modules. In the first case, for example, a drilling leg may break during the navigation phase or
the production tool may be worn out to keep extracting material. In this case, the system will receive a
notification message, and the operator or the meta-controller may decide to start Scenario 5:
Reconfiguration.

Similarly, in case of communication or software failure, the robot may have some self-repair actions
such as re-running failure nodes or trying other communication channels. However, if the failure cannot
be addressed, Scenario 5: Reconfiguration may be needed.

In this scenario a set of faults –both hardware and software– will be injected in the system during
operation. The robot shall:

1. Detect them.
2. Diagnose.
3. Update the system KB.
4. Inform the operator.
5. Initiate corrective action (note that the execution of the corrective action is not part of this

scenario; e.g. see Scenario 5).

5.4.1. Scenario 4 Variants

Fault tolerance can be achieved with different strategies. The RM metacontrol strategy uses dynamic
system adaptation based on system knowledge. A variant could be achieving fault tolerance by simple
module redundancy.

5.4.2. Scenario 4 Functions

• Detect fault
• Diagnose fault
• Update system knowledge
• Inform

5.4.3. Scenario 4 Entities

• Robot
• Operator
• Fault
• System knowledge base
• Diagnoser
• Propioception

5.5. Scenario 5: Reconfiguration
One of the capabilities sought in ROBOMINERS is robot resilience. This scenario addresses the capability
of the robot to reorganize itself to overcome circumstances and be mission-level resilient.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 46 / 58

This scenario starts when the surface operator or the meta-controller decides a reconfiguration is
needed. This may be due to a variety of circumstances: a robot structural failure, a communication
failure, energy needs, mission changes, etc.

Reconfiguration can take place at any system element (esp. it can happen both at the hardware and
software levels). In any case, the first step is to establish the best system configuration given the current
objectives, the cause that triggered the reconfiguration and both the robot and the mine state.
This selection may be aided with combined strategies: i) a system knowledge base with engineering and
mission knowledge, ii) a digital twin to test different reconfiguration strategies and evaluate its impact
in the operational scenario, iii) transfer learning to apply simulation-trained techniques to the run-time
situation, etc.

Once the new configuration is selected, we must identify which changes need to be made according to
the current situation and plan how the changes should be executed to impact as little as possible the
operation.

If the reconfiguration required is at hardware level, the robot shall detach the failing or non-required
modules. Then then new modules shall move to the correct position, or the robot shall move towards
the modules. Once the modules are close to the robot, Scenario 6: Self-assemble may be triggered. The
surface operator will monitor this phase, teleoperating the reconfiguration if necessary.

If the reconfiguration is at a software level, the operator or the meta-controller may decide to end some
ROS nodes and launch some new ones or change its operating parameters. This change in the control
software may be caused by a change in the module’s availability, e.g., a sensor is no longer available, so
similar data is obtained by some (probably less optimal) sensors. As this change in the sensor data
quality may affect security, the robot shall change its operating conditions such as speed or drilling
parameters.

Another possibility is that hardware reconfiguration provides some new capabilities to the system, so
the software is reconfigured to take advantage of such capabilities, e.g., adding another body so the
robot doubles its size and quantity of sensors. Then the software shall recalculate the robot locomotion
strategy to reach an optimal use of more legs to move.

In the concrete reconfiguration scenario, we will address the failure of some system element: the robot
will react a to –simulated– failure on a mechanical propulsion element.

5.5.1. Scenario 5 Variants

• Software only reconfiguration: the robot software is adapted to address new mission.
• Incorporation of new capability: the robot will react to the incorporation of extra sensors.

5.5.2. Scenario 5 Functions

• Reconfigure
• Meta sensing
• Meta acting

5.5.3. Scenario 5 Entities

• Robot
• Operator

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 47 / 58

• System configurator
• System knowledge base
• ROS
• Meta sensors
• Meta actuators

5.6. Scenario 6: Self-assemble
In the TA description, the robot is assembled from parts. In the self-assemble scenario a single robot
module is attached to an extant robot. While the base scenario considers assembling just one module,
in some sentences we may refer to several modules to consider the possibility of assembling several
modules and what are the potential implications.
Scenario 5: Reconfiguration
The robot module to be attached is located somewhere –in a small area– close to the robot and
decoupled from it. This scenario may occur, for example, when a required module that is not connected
to the robot body must be attached to it, or when a new robot module has been delivered in-situ (see
TA description). This may happen also if an agent (e.g., the meta-controller or surface operator) decides
that a hardware reconfiguration is needed. In this case, a module can be assembled to overcome a
failure or provide new system functionality. See e.g. scenario 5 variants.

Choosing the right robot hardware architecture (structure) to adapt to selective mining requirements
and its operating contingencies can be made by closing a structural control loop on top of the miner
robot operation system. This control loop may be closed by the surface operator, monitoring the mission
development. In deposits in which its characteristics allow a higher level of autonomy, the meta-
controller subsystem may be in charge of selecting the required robot architecture.

As mentioned in section 1, scenario 1: go to location, decision-making may be fully autonomous –the
robot decides- or follow a mixed approach –it is the robot-operator pair who decides. We may establish
a set of scaled autonomy strategies, from fully teleoperated to fully autonomous, to use accordingly to
concrete situations.

This self-assemble scenario may start before or after a decision is made on what is the robot architecture
to be enacted; i.e the assembly will be directed by a pre-specified architecture or the assembly will be
directed by a mission specification (this involves some self-organization capabilities described in
scenario 5).

First, the system shall locate the required module(s). The modules shall be identifiable, locatable, and
approachable. Depending on the complexity of each module –a sensor, a production tool, or a large
robot module– it may have self-identification, self-location, and self-movement capabilities. If not,
robotics commonly uses identification tags (bar codes, RFID, etc.) or/and artificial vision to recognize
and locate objects and this may be used for the new module. In a simulation, we could easily use these
identification systems but in real operation, we will probably need the surface operator to identify the
module (e.g., vision may not be available underground).

Once the required module(s) are located, they must get closer to make possible the physical
attachment. Depending on the motion capabilities and the specific mine condition, the main robot body
may move towards the module(s) or the other way around.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 48 / 58

This concept of getting close implies placing the connection port of the robot at a suitable distance from
the connection port of the module. Therefore, the getting close stage triggers scenario 1: go to location,
in this case, a location close enough to the required module.

Once both modules are near, the coupling starts. The coupling includes adequately orienting the ports
of the robot and module, approximation of both ports, and lock both modules together. The coupling
then needs to be validated: evaluated in terms of if both modules can adequately move together, share
information, share energy, etc. depending on the specific module features.

It may be the case that the robot needs external help for the assembly process. The self-assembly
capability may then be seen as a system-level capability and not a robot capability.

5.6.1. Scenario 6 Entities

• Robot
• Operator
• Mine
• Port: Part of a module or sub-module with coupling capabilities.

o Active port: A port with motion/orientation capabilities
o Passive port: A port without motion/orientation capabilities

• Module: Commonly, a type of node that represents an encapsulated, reusable, modular, and
replaceable part of a system’s software whose behavior is defined by interfaces. At a hardware
level, a module is the basic structure of a robot, capable to move, composed of a body and legs.
Modules can incorporate other modules or sub-modules to improve their capabilities. For self-
assembly capabilities, modules have motion and identification skills.

• Sub-module: Module with an atomic function in the system. At a hardware level, when we think
of sub-modules we picture legs, sensors, production tools, etc. which enhances a module's
knowledge or capabilities. For self-assembly capabilities, modules have only identification skills.

• Location: 6D location of all module elements. For self-assemble, the main locations of interest
are the active port of the module and sub-module.

o Position: The 3D position part of the location.
o Orientation: The 3D orientation part of the location.

• Map: The reference mine map shared by all subsystems.

5.6.2. Scenario 6 functions

• Module identification - Functionality and availability of a module or sub-module
• Module location - Identify position and orientation of the active port of a module or sub-module
• Move - Plan and navigate to module location [Go to location scenario]
• Orient - Move and turn mobile module to get an adequate position and orientation of active

port respective to other port of a module or sub-module.
• Attach - Connect ports.
• Coupling – Establish functional coupling between the robot and element.
• Validate coupling - test coupling in terms of motion, communication, energy sharing, etc.

depending on the specific coupling features

5.6.3. Scenario 6 variants

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 49 / 58

• All modules and submodules are thrown in the deposit via a large borehole (as in the project
summary description).

• An agent (e.g., the meta-controller or surface operator) may decide a hardware reconfiguration
is in need:

o To overcome a failure the robot is unaware of.
o To provide new system functionality.
o To share energy

• Self-dissasembly: e.g. to replace a wear-out production tool.

5.6.4. Scenario 6 evaluation

The self-assembly scenario is complex because it may require robot capabilities –esp. motion– at the
sub-robot level. This may imply that it cannot be demonstrated in the large robot RM1. On the other
side, simulators may enable the complete scenario with the required complexity level. The possibilities
of exploring this scenario in RM2 are bigger than in RM1 given its simpler operational specifications.

• RM1/RM2: Will perform manually-assisted assembly. A human operator will perform the
movements and connections between ports. The meta-controller may decide the best
architectural design for the run-time situation but it will be evaluated by the operator. The
assembled modules will be the motion subsystem (body and legs) with sub-modules such as
sensors or production tools and with other motion subsystems to create more complex miner
robots.

• Simulation/RM2: Will perform autonomous self-assembly. The meta-controller will decide the
best architectural design for the run-time situation. Then self-identification techniques will be
used to find the desired (sub-)module. The motion module will autonomously navigate towards
it. The assembled modules will be the motion subsystem (body and legs) with sub-modules such
as sensors or production tools. The assembled modules will be the motion subsystem (body and
legs) with sub-modules such as sensors or production tools and with other motion subsystems
to create bigger miner robots. We will also vary the motion subsystem adding or changing the
number of legs and its distribution.

5.7. Scenario 7: Mine Mapping
The robot is given the task of creating a mine map. This task may start from an empty map or may start
from a prebuilt map created by mine engineers and geologists. In this scenario the robot moves in the
mine and during movement it gathers geometrical and geophysical information that is used to update
the mine map.

The mapping of the mine may have four base strategies:

1. Fully autonomous reactive mapping. The robot moves freely –e.g. using bioinspired movement
patterns– and updates the mine map during the process.

2. Planned mapping. The system generates a movement and mapping plan from the information
available –esp. the extant mine map– and the robot follows this plan.

3. Cooperative mapping. The robot uses reactive mapping –as in strategy 1– while receiving
authoritative orders from the human operator.

4. Slave mapping. The operator uses the robot sensors for a teleoperated mapping of the mine.

The base scenario for mine mapping will be a planned mapping scenario.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 50 / 58

The scenario starts in geology / mining that produces an initial mine map.

A planner generates an exploration plan for the extant mine considering robot location and capability.

The plan is supervised, approved, and ordered to the robot by the operator.

The robot receives the order and starts the execution of the task. The robot moves in the mine acquiring
information that is incorporated to the mine map. During movement it uses reactive capabilities to
handle local disturbances –see scenario 1.

The mine mapping scenario ends when:

• The mapping plan is completed.
• The scenario is stopped by the operator.
• There is an insurmountable circumstance (e.g. a blocking obstacle, a sensor problem, etc.).

5.7.1. Scenario 7 Variants

• Fully autonomous reactive mapping.
• Cooperative mapping. Collaborate with other robot in the updating of the mine map.
• Slave mapping. Create the map under a master-slave relation with other agent (e.g. the human

operator).
• Find ore. Decide using mine/mining/geology knowledge were to go to start mining.
• Create spares map / Find spare. While the mine mapping scenario is mostly related with

geometrical/geophysical aspects of the mine, the mine map may contain info on other elements
of relevance (other robots, machines, spares, humans, recharging stations, etc.). The mine
mapping activity may get info on all these elements and report them to the mine map managing
agent.

5.7.2. Scenario 7 Functions

• Movement
• Ore sensing
• Geometry sensing
• Planning
• Operator communication

5.7.3. Scenario 7 Entities

• Mine
• Mine map
• Robot
• Operator
• Ore sensors
• Geometry sensors
• Mapping plan

5.8. Scenario Demonstration

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 51 / 58

As mentioned before, the scenarios described may be too general or not applicable to both RM1 and
RM2 physical robots. These scenarios include research interests for different partners in the consortium
and hence may address system aspects that are specific to some partner activities.

As the project develops, these scenarios will be particularized for the different activities in which they
will be evaluated –e.g., the final demo in a real mine– and the platforms -physical robots and
simulations- that will be used as proof of concept of the ROBOMINERS technologies.

The scenarios that have been described here point to some key activities that the system shall perform
to achieve selective underground mining capability. These include movement and ore extraction but
also some key features to increase the robustness and reliability of miner robots.

It is obvious that the complete scenarios described so far do not apply to all robots because due to the
nature of the project –TRL4– some of the results will be only demonstrated in concept proofs. In any
case, it is the ambition of the project to demonstrate as much capability as possible, but this shall not
induce confusion concerning the concrete developments of each robot. The following table describes
what scenarios will be demonstrated in what systems:

No. Scenario Name RM1 RM2 RM3 Rig RMS1 RMS2 RMS3 Sim
1 Go to location * * * * * *
2 Ore extraction * * *
3 Power assurance * * *
4 Fault detection * * * *
5 Reconfiguration * *
5.1 SW Reconfiguration * * *
6 Self-assemble *
7 Mine mapping * * * * * *
7.1 Find ore * *

RM1: Full scale robot (TAU)
RM2: Small scale robot (UPM)
RM3: Small scale robot (TalTech)
Rig: Ad hoc test rig
RMS1: RM1 simulator
RMS2: RM2 simulator
RMS3: RM3 simulator
Sim: Ad-hoc simulation needed for a specific evaluation.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 52 / 58

6. ANNEX: SPECIFICATION OF INTERFACES
The selection of ROS/DDS as middleware opens the way to an early specification of system interfaces
based on the architectural descriptions of the previous sections and the already available ROS basic
specifications.

ROS applications typically use messages, services, and actions to communicate through interfaces. ROS2
is inspired by the Interface Definition Language (IDL), to describe these interfaces using three
mechanisms:

• Message: .msg file to describe the fields of a ROS message
• Service: .srv file to describe a service (request and response)
• Actions: .action file to describe a goal, result and feedback

In this annex we summarily describe available ROS specification of interfaces and their use in the
specification of some core Robominer interfaces. These descriptions are based on online ROS
documentation4.

6.1. Message description
Messages are defined in .msg files in the msg/ directory of a ROSS package. They are defined as a field
type field name, for example:

int32 my_int

string my_string

Field names must be lowercase alphanumeric characters with underscores for separating words. They
must start with an alphabetic character; they must not end with an underscore and never have two
consecutive underscores. Default values can be defined as a third element in the definition:

fieldtype fieldname fielddefaultvalue

string full_name "John Doe"

Constant definitions are named in uppercase and the value is assigned with an equal sign

constanttype CONSTANTNAME=constantvalue

int32 X=123

The field types supported in ROS2 are:

4 https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 53 / 58

Type name C++ Python DDS type

bool bool builtins.bool boolean

byte uint8_t builtins.bytes* octet

char char builtins.str* char

float32 float builtins.float* float

float64 double builtins.float* double

int8 int8_t builtins.int* octet

uint8 uint8_t builtins.int* octet

int16 int16_t builtins.int* short

uint16 uint16_t builtins.int* unsigned short

int32 int32_t builtins.int* long

uint32 uint32_t builtins.int* unsigned long

int64 int64_t builtins.int* long long

uint64 uint64_t builtins.int* unsigned long long

string std::string builtins.str string

wstring std::u16string builtins.str wstring

6.2. Service description
Services are described and defined in .srv files in the srv/ directory of a ROS package. They are defined
by a request and a response msg type separated by ---, for example:

string str

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 54 / 58

string str

Any two .msg files concatenated with a ‘---’ are a legal service description, for example (if
you want to refer to a message from the same package, you must not mention the package
name):

#request constants

int8 FOO=1

int8 BAR=2

#request fields

int8 foobar

another_pkg/AnotherMessage msg

#response constants

uint32 SECRET=123456

#response fields

another_pkg/YetAnotherMessage val

CustomMessageDefinedInThisPackage value

uint32 an_integer

6.3. Action definition

Actions5 are intended for long running tasks, they consist of three parts: a goal, feedback, and a result.
Their functionality is similar to services, except the actions are preemptable (you can cancel them while
executing). They also provide steady feedback, as opposed to services which return a single response.

Actions use a client-server model similar to publisher-subscriber topics. An “action client” node sends a
goal to an “action server” the node that acknowledges the goal and returns a stream of feedback and a
result.

Actions are specified by 3 sections, each of which is a message specification:

1. Goal -This describes what the action should achieve and how it should do it. It is sent to the
action server when it is requested to execute an action.

5 https://design.ros2.org/articles/actions.html

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 55 / 58

2. Result - This describes the outcome of an action. It is sent from the server to the client when
the action execution ends, whether successfully or not.

3. Feedback - This describes the progress towards completing an action. It is sent to the client of
the action from the action server between commencing action execution and prior to the
action completing. This data is used by the client to understand the progress of executing the
action.

Any of these sections may be empty. Between each of the three sections is a line containing three
hyphens ---. Action specifications are stored in a file ending in .action. There is one action specification
per .action file. For example:

Define a goal of washing all dishes

bool heavy_duty # Spend extra time cleaning

Define the result that will be published after the action execution ends.

uint32 total_dishes_cleaned

Define a feedback message that will be published during action execution.

float32 percent_complete

uint32 number_dishes_cleaned

The action server maintains a state machine for each goal it accepts from a client. Rejected goals are
not part of the state machine.

There are three active states:

• ACCEPTED - The goal has been accepted and is awaiting execution.
• EXECUTING - The goal is currently being executed by the action server.
• CANCELING - The client has requested that the goal be cancelled, and the action server has

accepted the cancel request. This state is useful for any user-defined “clean up” that the
action server may have to do.

And three terminal states:

• SUCCEEDED - The goal was achieved successfully by the action server.
• ABORTED - The goal was terminated by the action server without an external request.
• CANCELED - The goal was cancelled after an external request from an action client.

State transitions triggered by the action server according to its designed behaviour:

• execute - Start execution of an accepted goal.
• succeed - Notify that the goal is completed successfully.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 56 / 58

• abort - Notify that an error was encountered during processing of the goal and it had to be
aborted.

• canceled - Notify that cancelling the goal completed successfully.

State transitions triggered by the action client:

• send_goal - A goal is sent to the action server. The state machine is only started if the action
server accepts the goal.

• cancel_goal - Request that the action server stops processing the goal. A transition only occurs
if the action server accepts the request to cancel the goal.

6.4. Some Common Interfaces for the Robominer implementation

6.4.1. Navigation

The navigation messages package6 provides several messages and services for robotic navigation7.

Messages (.msg)

• GridCells: An array of cells in a 2D grid.
• MapMetaData: Basic information about the characteristics of the OccupancyGrid.
• OccupancyGrid: Represents a 2-D grid map, in which each cell represents the probability of

occupancy.
• Odometry: This represents an estimate of a position and velocity in free space.
• Path: An array of poses that represents a path for a robot to follow.

Services (.srv)

• GetMap: Get the map as nav_msgs/OccupancyGrid.
• GetPlan: Get a plan from the current position to the goal Pose.
• SetMap: Set a new map together with an initial pose.

6.4.2. Sensors

The sensors messages packages8 provide many messages and services relating to sensor devices.

Messages (.msg)

• BatteryState: Describes the power state of the battery.
• CameraInfo: Meta information for a camera.

6 https://github.com/ros2/common_interfaces/tree/master/nav_msgs
7 More information about the navigation stack: https://navigation.ros.org/
8 https://github.com/ros2/common_interfaces/tree/foxy/sensor_msgs. Many of these messages
were ported from ROS 1 and a lot of still-relevant documentation can be found through the ROS 1
sensor_msgs wiki.

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 57 / 58

• ChannelFloat32: Holds optional data associated with each point in a PointCloud message.
• CompressedImage: A compressed image.
• FluidPressure: Single pressure reading for fluids (air, water, etc) like atmospheric and

barometric pressures.
• Illuminance: Single photometric illuminance measurement.
• Image: An uncompressed image.
• Imu: Holds data from an IMU (Inertial Measurement Unit).
• JointState: Holds the data to describe the state of a set of torque controlled joints.
• JoyFeedbackArray: An array of JoyFeedback messages.
• JoyFeedback: Describes user feedback from a joystick, like an LED, rumble pad, or buzzer.
• Joy: Reports the state of a joystick's axis and buttons.
• LaserEcho: A submessage of MultiEchoLaserScan and is not intended to be used separately.
• LaserScan: Single scan with a planar laser range-finder.
• MagneticField: Measurement of the Magnetic Field vector at a specific location.
• MultiDOFJointState: Representation of state for joints with multiple degrees of freedom,

following the structure of JointState.
• MultiEchoLaserScan: Single scan with a multi-echo planar laser range-finder.
• NavSatFix: Navigation Satellite fix for any Global Navigation Satellite System.
• NavSatStatus: Navigation Satellite fix status for any Global Navigation Satellite System.
• PointCloud2: Holds a collection of N-dimensional points, which may contain additional

information such as normals, intensity, etc.
• PointField: Holds the description of one point entry in the PointCloud2 message format.
• Range: Single range reading from an active ranger that emits energy and reports one range

reading that is valid along an arc at the distance measured.
• RegionOfInterest: Used to specify a region of interest within an image.
• RelativeHumidity: A single reading from a relative humidity sensor.
• Temperature: A single temperature reading.
• TimeReference: Measurements from an external time source are not actively synchronized

with the system clock.

Services (.srv)

• SetCameraInfo: Request that a camera store the given CameraInfo as that camera's calibration
information.

6.4.3. Diagnostics

The diagnostics messages9 package provides several messages and services for ROS node
diagnostics.

9 https://github.com/ros2/common_interfaces/tree/foxy/diagnostic_msgs

Deliverable 4.1 – Software Architecture – Revised Version

ROBOMINERS_D.4.1 v2 Page 58 / 58

Messages (.msg)

• DiagnosticArray: Used to send diagnostic information about the state of the robot.
• DiagnosticStatus: Holds the status of an individual component of the robot.
• KeyValue: Associates diagnostic values with their labels.

Services (.srv)

AddDiagnostics: Used as part of the process for loading analyzers at runtime, not for use as a
standalone service

7. BIBLIOGRAPHY

OMG. (2019). OMG Systems Modeling Language (OMG SysML™) Version 1.6. Object Management

Group.
ISO. (2011). ISO/IEC/IEEE 42010-2011 – Systems and software engineering – Architecture description.

International Standards Organization.
ROBOMINERS. (2019). ROBOMINERS. Project no. 820971 Contract. Annex 1 - Description of Action (part

A).
Walden, D. D., Roedler, G. J., Forsberg, K. J., & Hamelin, R. D. (2015). INCOSE Systems engineering

handbook. a guide for system life cycle processes and activities v4.0. Technical Publication
INCOSE- TP-2003-002-04.

