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1 Executive summary 
This report focuses on the on exploring alternative modalities for navigation in underground 
environments by giving an overview of conventional and bioinspired sensing, mapping and localisation 
methods. The report presents two studies that deal with sub-surfrace mapping and localization using 
physical and geophysical sensors. The given overview and results of the case studies give basis to 
continue the development of the found methods. The proposed frameworks in the studies can be 
broadened and improved by combining additional geophysical, physical, chemical and proprioception 
sensors. 
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2 OVERVIEW 

2.1 SCOPE AND PROBLEM DEFINITION 
The subsurface nature of the underground mines presents a set of challenges related to localisation, 
navigation, and sensor performance. The localisation in the mines is not only complex due to the GPS-
denied environment, but additional problems arise due to textureless surfaces and locally self-similar 
structure coupled with stringent navigation conditions. Further difficulties occur due to the 
environmental circumstances leading to severe sensor degradation due to combinations of darkness, 
dust, and smoke. Additionally, as the concentration of the ROBOMINERS project lies with inactive mines, 
we must consider the possibility of flooded and/or muddy settings. 

D1.1 looks at possible mapping and localization techniques in constrained underground environments. 
By combining different sensing modalities, the aim is to improve accuracy at mapping and localization 
in these settings. The aim of D1.1 is to give an overview of different sensors and navigation methods. 
This deliverable is split into four main parts. First, we give an overview of various conventional and 
bioinspired sensing methods that can be used in an underground setting. Second, overview of 
localisation and navigation methods is given. Third part of the deliverable will present two studies. The 
first study concentrated on feasibility on applicability of geophysical sensors for localization. The second 
study was carried out using inertial and pressure sensing on real world data under glaciers for mapping 
purposes. Finally, alternative unconventional sensing methods are presented.  
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2.2 OVERVIEW OF UNDERGROUND SENSING MODALITIES 

2.2.1 Conventional sensing methods 
Mining industry has over the years developed and improved the mining machines to be able to operate 
autonomously. This has been achieved by the improvement of the sensing modalities and achievable 
computing power. In following section, we look at the available techniques deployed both in research 
and industry, that are implemented already in real world scenarios. 

2.2.1.1 LiDAR  

The high accuracy of LiDAR makes it a standard device to turn to for control and navigation for 
autonomous cars (Lim and Taeihagh 2019). LIDAR has been used in many underground scenarios on 
UAV platforms. Recently, Jacobson et al showed, that LIDAR data combined with camera and odometry 
could allow to localize in within a real world mining scenarios with close to 1m accuracy on 
approximately 33km long mine dataset  (Jacobson et al. 2020). LIDARs have also been used in various 
underground mapping purposes by (Neumann et al. 2014)(Grehl 2017), for localization of ground (Losch 
et al. 2018)(Azizi and Tarshizi 2016) and aerial robots (Papachristos, Khattak, Mascarich, and Alexis 2019) 
and for mining safety purposes (Errington, Daku, and Prugger 2010).  
 
In ROBOMINERS project, LiDARs could be used in the dry mining environment and would allow to 
validate performance of other sensing modalities, allow accurate mapping and excavation monitoring. 

2.2.1.2 Sonar (sound navigation ranging) 

Sonars can be used both in air and in water, can be used as active for detection of objects or passive for 
navigation using sound beacons. Sonars have been in the suite of sensors for various mining scenarios: 
in flooded mining environments, UNIXMIN project platform UX 1 integrated sonars for obstacle 
detection and navigation (Martins et al. 2018); (Azhari et al. 2017) used sonars array of sonars to create 
a 3D map of a mine with an aerial UAV; (P. M. Newman, Leonard, and Rikoski 2005) developed  
simultaneous mapping and localization with synthetic aperture sonars on a UAV; sonars have been also 
used for inspection of underwater structures (Mueller et al. 2017). 

Compared to LiDAR sonar sensors are less accurate, but on the other hand the sonar data is sparse and 
easier to process in real time and is able to operate in dusty or smoke-filled environments (Azhari et al. 
2017). Therefore, in case of a dry or submerged mining scenarios, sonars should be considered as 
possible sensing modalities. 

2.2.1.3 Cameras 

Using cameras for localization is the most flexible and low-cost approach. There are a numerous SLAM 
methods developed for 2D cameras (Wu, Tang, and Li 2018). Stereo cameras have been used to do 3D 
mapping with aerial robots in subterranean tunnels (Mascarich et al. 2018; Papachristos, Khattak, 
Mascarich, and Alexis 2019; Azhari et al. 2017)(Alexis 2019) and in under water enclosed spaces by 
(Rahman, Li, and Rekleitis 2018)(Weidner et al. 2017)(Johnson-Roberson et al. 2017).  
Using different light sources with multi-spectral camera allows to identify rock and mineral and 3D 
reconstruction of the geology (Martins et al. 2018). 

Usage of long wave infrared of the electromagnetic spectrum allows use thermal cameras in 
environments with poor visibility and has been included in sensor sets in various underground mapping 
and localization studies (Khattak et al. 2019; Dang et al. 2020; Khattak, Papachristos, and Alexis 2019; 
Papachristos, Khattak, Mascarich, Dang, et al. 2019). 
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Usage of cameras in the ROBOMINERS context would allow to use them for mapping and localization 
purposes where the air/water is relatively clear. In case of muddy and slurry environment, cameras 
could be deployed with additional lens cleaning methods.  
 

2.2.1.4 Proprioception sensing 

In some cases, where the visual cues are impaired, the robot could rely on blind mapping and 
localization using its internal measurements and perform so called dead reckoning. There are various 
proprioception sensing modalities that could be included: 
 

• IMU – The possible applications of IMUs (internal Measurement Units) spread from consumer 
electronics (e.g. smart watches) to complicated navigation of airplanes (Bhattacharyya et al. 
2019). IMUs (internal measurement units) are often used in combination with LiDAR(Neumann 
et al. 2014; Dang et al. 2020; Alatise and Hancke 2017) and other sensing modalities (Ghosh, 
Samanta, and Chakravarty 2017; M. G. Li et al. 2020) for improved mapping and localization. It 
has been shown, that dead reckoning with IMUs can help to improve odometry errors 
(BROSSARD and BONNABEL 2019; Reinstein and Hoffmann 2013). IMUs could also be used for 
surface type classification indoors (Lomio et al. 2019), that could possibly also work similarly in 
mining environment soil differentiation during locomotion. By using multiple IMUs, angle 
between joints could be estimated when joint sensors might fail. 

• Power consumption – observation of power consumption of locomotion on different terrain 
and soil types could be used as additional landmarks for localization. (Manjanna, Dudek, and 
Giguere 2013) used legged robots energy consumption to evaluate different soil types. This 
could be similarly done in mining environment, to determine between different surfaces 
(muddy, sandy, hard rock surfaces). 

• Relative position of modules, joints – the usage of internal odometry can be used for estimating 
movement and the positioning in the real world just by using encoders on the actuators 
performing the locomotion by knowing the configuration of the robot with angles between 
different modules and joints (Schwendner, Joyeux, and Kirchner 2014).  

• Force feedback – measurement of forces during locomotion allows to create a ”haptic map” of 
the of a ground beneath the robotic platform with examples from robotics found in 
(HOEPFLINGER et al. 2010)(Qian et al. 2019). Force feedback could also be used for obstacle 
avoidance (Andruska and Peterson 2008; Kuwada et al. 2008; Date and Takita 2007). 

Measurement of internal state is important in the ROBOMINERS settings, where the proprioception can 
help to help to fill mapping and localization caps, where the uncertainty of vision and geophysical 
sensing is high. 

2.2.1.5 Geophysical properties 

There are various methods geophysical parameters that are observed and measured in mining 
industries in order to map underground structures and ore compositions. Following list of geophysical 
sensing methods gives a short overview of possible methods, that could be modified and possibly used 
also in ROBOMINERS settings. 
 

• Spectroscopy methods – there are various spectroscopy methods that are used to detect and 
chart mineral compositions of the ore (Robben and Wotruba 2019; Meer 2018). Few examples 
are x-ray fluorescence, UV fluorescence, LIBS etc. Depending on the minerals interest, 
spectroscopy methods can be relatively slow in their nature, but can provide a feature rich 
information in context of ore following and mapping. 

• Acoustic measurements – acoustic methods can be divided into passive and active. Passive 
acoustic methods, where the signal is generated by the subsurface objects, are used in 
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underground sensing for example for underground health monitoring and failure localization 
(L. Sun and Li 2010; Kang, Yu, and Hou 2011), and monitoring natural events like volcanic 
explosions, earthquakes, landslides (Zhu et al. 2013). Active acoustic methods use artificial 
explosions or vibrations to study the underground properties. Typical examples of the active 
acoustic methods include measurement of stratum structure and thickness, lithology, location 
of possible gas and oil formation layers (Zhong et al. 2009)(Lin Yao et al. 2010)(Pamukcu and 
Cheng 2017).  

• Electrical and electromagnetic measurements - Electrical or electromagnetic methods are often 
used to monitor the variations in the distribution of these resistivity values to extract temporal 
and spatial information about geological formations and subsurface structures. E.g. electrical 
resistivity survey is a technique that is used to image the subsurface structures by measuring 
the electrical resistivity distribution on the boundaries of different layers and formations 
(Pislaru-Danescu et al. 2013). Conductivity measurement have been used for example in 
detection of soil and groundwater pollution (Martens and Walraevens 2009).  

Like the acoustic methods, electromagnetic waves provide another subsurface imaging 
approach for shallower depths in the subsurface. A good example is a ground penetrating radar, 
that emits high-frequency radio wave pulses downward and detects the reflected waves from 
objects or boundaries below (Pamukcu and Cheng 2017). Electromagnetic induction is an 
effective approach to detect buried conductive targets (e.g. pipes, cables and other metallic 
objects) (Manstein et al. 2015)(Manstein et al. 2015). 

Geophysical sensors are essential in ROBOMINERS context. The capability of following ore in the 
selective mining concept in harsh conditions proposes challenges and opportunities for modifying and 
creating new ways of geophysical sensing. A thorough overview of geophysical sensing will be given in 
D6.1 “Miner perception report”. 

2.2.1.6 Environmental properties in a mine 

Changes of environmental properties along the mining environment could be useful for mapping and 
localization, where vision is impaired. 

• Magnetic field – Magnetic anomalies have been used for various applications, from pedestrian 
navigation systems (Afzal, Renaudin, and Lachapelle 2011), generating indoor magnetic field 
based maps (Gozick et al. 2011) to localization improvement in drilling environments (Park and 
Myung 2018). In the field of robotics, it has been shown that magnetic field can be used for 
localization and mapping in (Haverinen and Kemppainen 2009). Depending on the robot 
construction and its effect on the magnetic field, its sensing could be also used in the 
ROBOMINER concept for mapping without visual cues. 

• Pressure – in flooded mines, pressure can be used with determine the depth of the robot and 
can be used for mapping the underground structures and also for localization (Ferrera et al. 
2019). Using differential pressure sensing has also been deployed in detection of velocity if 
underwater vehicles(Fuentes-Perez et al. 2016; Meurer et al. 2020).  

• Temperature – it is known, that thermal gradient with respect to increasing depth into Earth’s 
crust is about 25 – 30 °C/km (Fridleifsson et al. 2009). Temperature monitoring in mining 
environment is used for safety purposes of the workers and operations [(Henriques and 
Malekian 2016). Temperature sensors in robotics have been used in search and rescue 
platforms (Zhao et al. 2017)(Günther et al. 2019). Monitoring temperature is also important for 
internal sensing, to compensate drifts on sensors prone to thermal changes. 
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2.2.2 Bioinspired sensing methods 
Through thousands of years of evolution, nature has developed sensing strategies that are versatile in 
the most extreme conditions. Motivated by the senses used to gather information by the animals 
living and hunting underground, an overview of the alternative, simple, and robust sensing modalities 
is given. The modalities considered include tactile sensing, temperature, hydrostatic pressure and 
flow, dynamic changes in electric conductivity, measurement of leg loading to sense terrain roughness 
and grip. 

2.2.2.1 Tactile sensing 
Through contact, tactile sensors can provide a valuable and diverse set of signal data containing detailed 
information about the surrounding environment. The information extracted from tactile sensors can 
range from low-level forces at individual contact points to feedback selecting complex actions based on 
previous interactions (Q. Li et al. 2020). The sensing is most often done by placing the sensors 
underneath an artificial skin (Dahiya et al. 2010; Calderón et al. 2019) or by using artificial whiskers 
(Huet, Rudnicki, and Hartmann 2017; Nguyen and Ho 2019). The common types of sensory signals are: 

1. Normal and tangential force – One of the most common tactile signal is the contact force. Most 
tactile sensors are able to measure normal force (Papakostas, Lima, and Lowe 2002; Schurmann 
et al. 2011). However, some sensors can measure full 3-D force (Noda, Matsumoto, and 
Shimoyama 2014; X. Sun et al. 2019). 

2. Vibration – Another fundamental type of tactile signals are mechanical vibrations used to detect 
contact or slip events between contact surfaces(Fishel, Santos, and Loeb 2008; Tanaka, Horita, 
and Sano 2012; Fernandez et al. 2014).  

3. Thermal – Thermal tactile sensing allows temperatures measurements via touching (Monkman 
and Taylor 1993; Di Giacomo et al. 2017). 

4. Proximity – A pre-touch sensor can provide a robot with the relative geometrical relation to an 
object, which is valuable for robot planners and controllers (Goger, Alagi, and Worn 2013; 
Shimonomura, Nakashima, and Nozu 2016).  

Further advancements have been made in tactile sensors in (Calderón et al. 2019) by adopting basic 
mechanisms employed by the earthworms. A sensing scheme for feedback control is used that mimics 
the mechanical sensory capabilities of an earthworm’s skin, which was developed upon stretchable 
liquid circuits capable of measuring strain and detecting pressure variations. 

In addition, (Nguyen and Ho 2019) proposes a morphological computation method to localize the 
contact position/locate the contacted object by investigating the induced strain, measured by a strain 
gauge representing sensory nerves, along the length of a whisker. 

2.2.2.2 Visual 

In GPS-denied setting, often sonar (Elfes 1986; Yap and Shelton 2009; Fallon et al. 2013), and laser 
(Bosse and Roberts 2007; Huijing Zhao et al. 2008) sensors are used to collect information for mapping, 
localisation, and navigation. As well as to aid decision making. Bioinspired dynamic vision sensors (DVSs) 
have become increasingly popular in recent years. The appeal of bioinspired vision sensors is due to the 
inherent redundancy suppression, integrated processing, fast sensing capability, wide dynamic range, 
and low power consumption (Cho and Lee 2015).  

DVSs have been used for tracking (Camunas-Mesa et al. 2018), detection and recognition (Humenberger 
et al. 2012; Perez-Carrasco et al. 2010), visual reconstruction (Brandli et al. 2014), and SLAM 
applications. The 2D SLAM problem has been attempted in (Hoffmann, Weikersdorfer, and Conradt 
2013) and 6-DOF pose estimation in (Mueggler, Huber, and Scaramuzza 2014; Kim, Leutenegger, and 



 

 

ROBOMINERS DELIVERABLE 1.1 

 

 
ROBOMINERS_D1.1               Page 10 / 25 

Davison 2016). When coupled with other sensors DVSs have been used for 3D SLAM (Weikersdorfer et 
al. 2014) and visual odometry (Censi and Scaramuzza 2014) problems. 

2.2.2.3 Flow sensing 

Conventional methods use vision and sonar for underwater robots for autonomous localization. In 
(Salumäe and Kruusmaa 2013; Muhammad et al. 2017, 2019) it has been shown that similarly to fish, 
bioinspired flow sensing can be used in robotics for object detection and positioning. 

2.2.2.4 Conductivity around the robot 
To sense nearby objects in environments where clutter, lack of light, and turbidity make vision 
ineffective, some fish use active electro-sense. It has been suggested in (Servagent et al. 2013) that a 
sensor where one electrode of the sensor acts as a current emitter and the others as current receivers 
can be used for obstacle avoidance. Artificial electric sense has been explored for object localization in 
(Lebastard et al. 2013; Solberg, Lynch, and MacIver 2008) and navigation (Boyer et al. 2013). Further 
advancements have been made in object shape recognition in (Bai et al. 2015; Lanneau et al. 2017; 
Bazeille et al. 2017). 

2.3 OVERVIEW OF MAPPING AND LOCALIZATION METHODS 

Needing to know where we are and wanting to know how to reach the goal makes localization and 
navigation two most crucial tasks of a completely autonomous robot. In mining environment, these 
tasks can be immensely difficult, due to the complexity of the setting. The mines are a GPS-denied 
environment, hence the navigation and localization have to depend on other information. This is further 
complicated by the textureless surfaces, locally self-similar structure, and narrow navigation conditions. 
Additional problems can result from severe sensor degradation due to darkness, dust, and smoke, as 
well as mud and water. This section will look at different mapping, localization and navigation methods 
that can be applied in an underground setting.  

Different possible sensors used for localization and navigation have been discussed in section 2.2. In this 
section, feasible methods for localization and navigation in subsurface environment are looked at, with 
specific interest in state-of-the-art bioinspired methods. 

The underground localization is similar to indoor environment in the sense that a GPS signal is not 
available. However, most of the common methods used in indoor localization will not work. In addition 
to challenges provided by the mining environment, extracting the information from the raw signal 
proposes further uncertainties. Being able to recognize same place from different viewpoints and over 
any timescale can be tricky due to variations in measurements. Storing and analysing all this data creates 
a huge memory demand.  

In the first half of this section, we look at common approaches applying machine learning methods to 
localisation and navigation tasks using the data from different sensors. The second half will discuss some 
of the state-of-the-art bioinspired localisation and navigation methods. 

Concentration will be on simultaneous mapping and localization (SLAM), as it is not possible to assume 
the existence of pre-existing maps.  
 

2.3.1.1 CONVENTIONAL LOCALISATION METHODS 
Most frequently used sensors for SLAM applications can usually categorise under laser-based, sonar-
based, and vision-based. All sensor information collected by sensors include some measurement error 
(noise). To be able to model different noise sources and their impact on the measurements, often 
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probabilistic approaches are used for SLAM (Aulinas et al. 2008; Bresson et al. 2017). The probabilistic 
approaches include Kalman filter (KF), particle filter (PF), and expectation maximisation (EM) based 
models. 

KF based models work well for linear cases, however for non-linear models extended Kalman filter (EKF) 
can be used. EKF based SLAM (Shoudong Huang and Gamini Dissanayake 2007) is used for underwater 
localization (P. Newman and Leonard 2003; Leonard and Feder 2000) using sonars and for vehicle 
navigation using laser scanners (Guivant, Nebot, and Baiker 2000; Genevois and Zielinska 2014). A lot of 
the conventional localisation methods use visual sensors as primary input signal, called visual 
simultaneous localization and mapping methods (visual SLAM or vSLAM). The visual SLAM methods 
include MonoSLAM (Davison et al. 2007), that uses EKF. 

However, the EKF approximations can cause large error, and to address this unscented Kalman filter 
(UKF) based SLAM can be used (Huang, Mourikis, and Roumeliotis 2009; Wang et al. 2013). Information 
filter (IF), another variant of KF, has also been used for feature based SLAM (Walter, Eustice, and 
Leonard 2007), vison-based 6-DOF SLAM (Eustice et al. 2005), as well as multi-robot navigation (Thrun 
and Liu 2005).  

Another extensive group of SLAM methods are based on PF, a recursive Bayesian filter that is 
implemented in Monte Carlo simulations. The advantage of PF lies in the ability to handle highly 
nonlinear sensors and non-Gaussian noise. This, however, comes with an increased computational cost 
and PFs suffer from long-term inconsistency. Vision-based SLAM using PF has been demonstrated in 
(Robert Sim, Griffin, and Little 2005). One of the most well-known PF based SLAM methods is FastSLAM 
(Montemerlo and Thrun 2003), where landmarks are estimated using EFK and particles are used for 
trajectory. The FastSLAM has been shown to work for real-time vision-based SLAM (R. Sim et al. 2006), 
stereo-vision (Barfoot 2005), and underwater sonar-based applications (He et al. 2012; Forouher et al. 
2011). 

EM has been used for SLAM with sonar-based mapping in (Burgard et al. 1999), RGB-D SLAM in (Ma et 
al. 2016), and 2D laser scan in (Dong et al. 2015). The EM estimation was developed in the context of 
maximum likelihood (ML) estimation, offering an optimal solution. This makes it a good choice for map-
building, however, not for localization.  
 
Additionally, to probabilistic methods, optimisation-based methods are frequently used. Optimisation 
based methods are bundle adjustment (a vision technique that jointly optimizes a 3D structure and the 
camera parameters) and graph-based slam. Bundle adjustment is applied for vision-based SLAM in 
(Royer et al. 2007; Frost, Prisacariu, and Murray 2018; Schops, Sattler, and Pollefeys 2019). In (Royer et 
al. 2007) and (Frost, Prisacariu, and Murray 2018) monocular vision for localisation, using bundle 
adjustment. Bundle Adjusted Direct RGB-D SLAM is proposed in (Schops, Sattler, and Pollefeys 2019). 
Furthermore, mapping part of parallel tracking and mapping (PTAM) (Klein and Murray 2007) is based 
on keyframes, which are processed using bundle adjustment. PTAM has been proposed to solve the 
computation cost problem of MonoSLAM by dividing the tracking and mapping tasks into different 
threads of CPU (Taketomi, Uchiyama, and Ikeda 2017).  
 
A graph-based SLAM approaches (Grisetti et al. 2010) are for example COP-SLAM (Dubbelman and 
Browning 2015) and TreeMap (Frese 2006). A comparison of filtering and optimisation approaches to 
monocular SLAM is given in (Strasdat, Montiel, and Davison 2010), and for visual SLAM in (Strasdat, 
Montiel, and Davison 2012). A more recent overview of different visual SLAM methods can be found in 
(Taketomi, Uchiyama, and Ikeda 2017). 
 
In (Kanellakis and Nikolakopoulos 2016), a study in an underground mining environment was performed 
comparing visual SLAM methods using three different sensors: a RGB-D, a stereo camera configuration, 
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and a monocular camera. However, stereo camera based localisation accumulates large drift error, and 
therefore, a sole use is not recommended. From the methods compared, the RBG-D sensor produced 
the best results.  

Using range imaging systems has advantages as it provides information on both the visual appearance 
and distance, both of which increases the robustness of the real-time mapping. However, there are 
limitations of onboard memory. Furthermore, visual cues are sensitive to changes in lighting conditions 
as well as lighting intensity extremes. 

Methods proposed specifically for underground mining problem, include a robust GICP-Based 3D LiDAR 
SLAM method (Ren, Wang, and Bi 2019), RIFD tag based global localization method (Rusu, Hayes, and 
Marshall 2011), and UWB-based Localization System (Qin, Wang, and Zhou 2015).  

2.3.1.2 BIOINSPIRED LOCALISATION METHODS 
Localization in the underground mining environments have gathered ideas from different bioinspired 
sources. In (Ni et al. 2014), a bioinspired model is proposed to improve the robustness and accuracy of 
extended Kalman filter based SLAM method by using neural model to model the noise.  
 
Different animal behaviour has been used to develop methods for localization and navigation in GPS-
denied environments. In (Simon et al. 2020), sonar reflectors have been proposed as guiding beacons 
in underwater localization. The idea is based on the bat-pollinated flowers that are able to attract 
attention, engage, and direct bats in very difficult surroundings with acoustically conspicuous floral 
reflectors (Simon et al. 2020). Bluetooth beacon-based underground navigation system have been 
proposed for mine haulage purposes in (Baek et al. 2017) as well as to aid navigation of cars in tunnels 
(Waze 2020). Indoor localization problem called Cricket has proposed in (Priyantha 2005). Using location 
beacons, RF messages periodically transmit location information (Priyantha 2005). 

In (Milford, Wyeth, and Prasser 2004), motivated by computational models of the rodent hippocampus, 
a RatSLAM approach to simultaneous localization and mapping problem has been proposed. Aimed 
primarily at tactile object exploration, Whisker-RatSLAM was proposed in (Salman and Pearson 2018) 
as an extension to the RatSLAM. Whisker-RatSLAM uses a tactile whisker-array mounted on a robot as 
its only sensor input. In (Struckmeier et al. 2019), a multi-sensor fusion method ViTa-SLAM has been 
proposed making use of the long-range visual information and short-range whisker (tactile) sensory 
information for localization and navigation.  
 
  



 

 

ROBOMINERS DELIVERABLE 1.1 

 

 
ROBOMINERS_D1.1               Page 13 / 25 

3 CASE STUDIES 
In the initial phase of ROBOMINERS, WP1 has carried out two studies on mapping without visual clues. 
In the first study, geophysical sensing was investigated in the localization perspective. In a second study, 
inertial and pressure sensing was combined for blind mapping of underground channels in glaciers. The 
following works are summarized below. 

3.1 GEOPHYSICAL SENSING FOR LOCOMOTION APPLICATIONS 
The objective of this study was to study underground localization based on the geological and 
geophysical characteristics of the environment to be explored. The study was based on two sensors and 
implemented data clustering and supervised learning for localization. The study based on two sets of 
experiments: 

1. XRF and conductivity measurements were conducted on 4 cores from the Outukumpu complex, 
specifically from the Kylylahti mine in Eastern Finland available at Särghaua Earth Science 
Centre Laboratory in Estonia. Measurements of the 240 points with the XRF were taken: each 
measurement lasted 60s, and obtained the ppm value of 26 elements for each point. 
Measurements of the 240 points with the conductivity meter were taken: each point was 
measured 10 times. We kept the mean value in µS of the 240 points. 

2. Measurements from Ülgase Mine were collected using XRF sensor only (since the mine walls 
did not present conductive nor semi-conductive properties). 27 measures on a mine wall of 5m 
were collected, where the measured points were equally distant of about 20cm. 

The datasets where analysed for localization purposes with following steps: 
1- Two non-supervised clustering algorithms, namely PCA and k-means, were used to identify 

possible clusters for map building. The two methods gave unsatisfying results due to the large 
dimensionality and disparity of the collected data. 

2- A custom hashing-based clustering algorithm was used to create clusters for mapping and for 
identification (localization). 

 
Figure 1  Workflow of the geophysical sensing with supervised clustering algorithms 

The localization in the generated cluster maps gave and average error of 0.7m for the core samples and 
0.8m from samples collected in the mine. 

Future work 
Even if the obtained results are promising for other investigations, it will be reasonable to continue the 
work of with following future perspectives: 

• Collect more samples in the field, to know if the proposed algorithm works despite the 
heterogeneity of the geological materials. 

• Coupling the data from the XRF and Conductivity meter sensors with other sensors to get more 
accurate and precise information. 

• Investigate other clustering methods. 
• Investigate the robustness of the proposed clustering and localization method. 

 
The study is presented as a Master thesis “Geophysical features extraction from underground mining 
environment using portable sensors for localization of mobile robots” by Anis Mustapha Allal. 
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3.2 BLIND MAPPING BASED ON IMU AND PRESSURE DATA 
The aim of this study was to provide a reference map for pressure distribution in englacial channel. 
Similarly, to the mining environments, the englacial channels cannot be mapped using traditional 
methods, due to inaccessibility and lack of GPS signal in subsurface environments. The results of this 
study can will be presented in a journal article “Topology and pressure distribution reconstruction of an 
englacial channel” by Laura Piho, Andreas Alexander, Maarja Kruusmaa, and Jeffrey Andrew Tuhtan 
(found in Appendix 2). 
 

 
Figure 2 (left) exit from englacial channel and (right) reconstructed path of an sub surface channel on 

a glacier 

As an alternative to the conventional robot sensing systems (e.g. sonars, cameras, radars), IMU and 
pressure sensors are used for mapping. The dataset contains measurements recorded using an IMU 
tube that was thrown into the englacial channel and retrieved approximately 1500m downstream. The 
model proposed uses 9DOF IMU signals and two reference points to approximate a map the tube 
travelled. Figure 2, left, shows an aerial image of an englacial channel section and on the right, shows 
the whole estimated track. The red line shows the known channel track, and blue lines show the GPS 
measurements in the whole channel. The GPS signal gets lost when the devices enter the subsurface 
section of the channel and is only able to provide some information in the end of the englacial channel. 

The model was validated using three different datasets. First, a simple controlled environment model 
resulted in an average error less than 1m and maximum error less than 3m. The main set of results were 
obtained using data collected on supraglacial and englacial channels on Austre Brøggerbreen (Svalbard). 

The average error in the supraglacial and englacial channel is less than 5m. In addition to topology of 
the glacial channels, the pressure distribution is given, showing the features in the glacial channel 
related to the pressure. 

The future work will concentrate on: 
• Applying the proposed method to mining scenarios. The main challenge here will be the 

computational complexity of the model; 
• Investigate blind mapping using different sensors; 
• Sensor fusion for navigation and localisation using the proposed method with other sensors; 
• Explore different signal processing, and unsupervised and supervised learning methods for 

navigation, localisation, and feature mapping.  
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4 ALTERNATIVE PERCEPTION METHODS 

4.1 MYON TOMOGRAPHY 
TalTech has been in contact with physics group from University of Tartu, that has been developing muon 
tomography for the screening purposes in custom services with GoSwift Ltd (Suurpere 2019). Research 
in the recent two decades has proven detection devices based on cosmic ray muons to be a viable safe 
alternative to detection technologies using artificial ionizing radiation (Borozdin et al. 2003). The 
tomography prototype is in development phase, and has proven to be useful in detecting shape and 
materials. 

Within the ROBOMINERS project, this technology could be studied in mapping point of view. As muons 
penetrate trough the Earths crust, using the tomography plates could be used to map mine ceiling and 
walls around the robominer. 

 
Figure 3 A muon tomography plate ready for measurements (Suurpere 2019) 

4.2 BIOINSPIRED TOUCH AND FLOW SENSORS 

TalTech has been recently involved in development of a bioinspired flow sensor in H2020 project 
Lakshmi (A. Ristolainen et al. 2018; Asko Ristolainen et al. 2016; Asko Ristolainen, Tuhtan, and Kruusmaa 
2019). These sensors if placed on the body of ROBOMINER could be turned in touch sensors.  

Such sensors could give information like surface irregularities, water motion around the robot when 
submerged, help to detect walls and objects during locomotion. The main challenge in applying these 
sensors lays in the consolidation for mining environment with high risk of wear and tear. 

 
Figure 4 Bioinspired flow sensors used for flow classification (Asko Ristolainen et al. 2018) 
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5 CONCLUSION 
As seen from the overview, localization and mapping has been strongly based recently on visual 
perception. In the ROBOMINER concept, vision could be used in dry and clean mining scenarios or as a 
ground truth for developing mapping and localization. One of the main challenges in ROBOMINERS is to 
operate in the mining environment blindly, meaning following ore using geophysical methods, sensing 
the surrounding environment physical properties and objects or obstacles in the close vicinity. 

Geophysical methods have mainly been deployed in observing the structures and Earth’s crust 
properties into various depth ranges. Ore mineral content has been specified with different 
spectroscopy methods. Ruggedizing and modifying the geophysical sensor in ROBOMINERS could allow 
to develop new and improved ways of sensing in mining environments. 

Bioinspired sensing has shown to be used in various applications: from obstacle detection with whisker 
like sensors to echolocation that is used by bats in caves. The bioinspired sensing modalities developed 
in robotics have largely been used in confined spaces of laboratory setups. When it comes to mining 
environment, also proven bioinspired solutions must go through a round of re-engineering in order to 
withstand the high change of wear and tear. 

The conventional localization methods are often probabilistic (e.g., Kalman filter and particle filter based 
models) or graph based. In mining environment, the difficulty arises from the quality of sensor 
information. Most simultaneous localisation and mapping models use vision, laser, and/or sound 
sensing, however, in mining environment these sensors are susceptible to severe sensor degradation 
and noise due to darkness, dust, and smoke, as well as mud and water. The practicality of different 
localisation models in large underground self-similar environment will be assessed based on the 
scalability, computationally efficiency, and robustness, using various sensor input data (detailed sensor 
list in D6.1).  

In the feasibility studies we showed, that even with small number of sensing modalities it is possible to 
perform mapping and localization, both with proprioception (pressure and IMU) and using geophysical 
sensing (XRF and conductivity). The results of the studies encourage us to develop the proposed 
methods further with following suggestions: 

• Combination of different geophysical sensing methods combined with robominer’s proprioception 
would allow to improve the mapping and localization capabilities; 

• Abundance of perception methods would allow to oversample and to rule out similarity of clusters 
• Implementation of previous knowledge of the mine could be implemented for pre-learning the 

mapping and localization on the robominer.   
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