• ROBOMINERS

Potential targets of small scale robotic mining

Éva Hartai

University of Miskolc

ROBOMINERS webinar, 18 February 2021

ROBOMINERS - Project facts

- Title: Resilient Bio-inspired Modular Robotic Miners
- Call: "New solutions for sustainable production of raw materials" (RIA)
- Duration: 2019 June 2023 November (54 months)
- Budget: 7,4 M€
- 14 partners from 11 European countries (universities, SMEs, governmental and non-governmental organisations), 16 LTPs (EFG member associations, covering 17 countries)
- Coordinator: UPM
- Website: www.robominers.eu

Objective

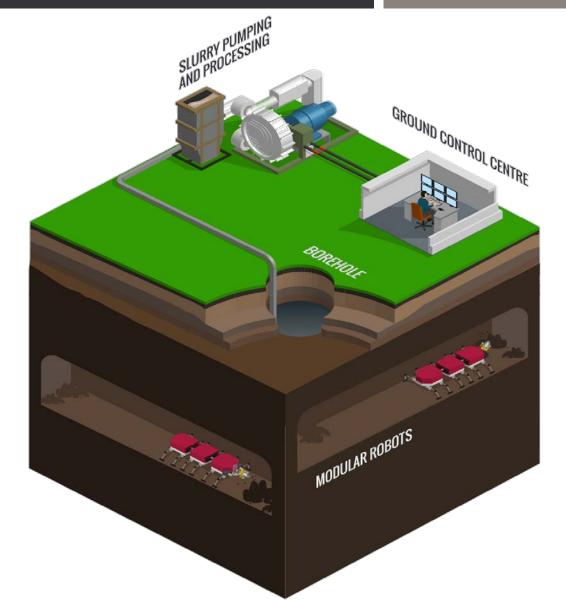
- Enable EU to access to strategic mineral raw materials from domestic resources
- Exploit mineral deposits which are not economic by traditional mining
 - Too small, too deep, difficult to access
- Develop a bio-inspired, modular and reconfigurable robot-miner
- Capable of navigating and performing selective mining underground, in flooded environment

Specific objectives

Construct a fully functional modular robot miner prototype capable of performing selective mining

Validate all key functions of the robot-miner to a level of TRL-4.

Design a mining ecosystem of expected future upstream/downstream raw materials processes via simulations, modelling and virtual prototyping



Use the prototypes to study and advance future research challenges on

- scalability, resilience, re-configurability, self-repair, collective behavior, operation in harsh environments,
- selective mining,
- production methods, as well as for the
- necessary converging technologies on an overall mining ecosystem level.

Concept

Robot parts (modules) are sent underground via a borehole

Self-assemble to form a fully funcional robot

Use specialised sensing devices to detect ore

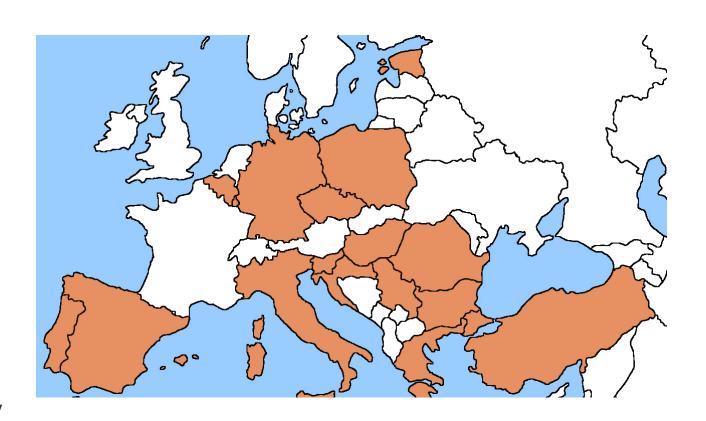
Using ad-hoc production devices, they produce slurry that is pumped out

Geological background – review of relevant mineral deposits

- Ranking ore deposit types by their suitability for ROBOMINERS -

Ore type	Geometry	Rock mechanics - stability	Rock mechanics - extractability	Economics	Ranking ∑
SSC (Kupferschiefer- type)	5	4	4	4	17
Hydrothermal veins	4	3	4	4	15
Pegmatite	4	4	3	4	15
VMS	4	3	4	4	15
Carbonatite alkali REE	4	4	2	5	15
Cu-Ni-PGM sulphide	4	4	2	5	15
Epithermal (LS) vein type	4	3	4	4	15
Orogenic gold	4	3	3	5	15
Skarn	4	3	3	4	14
SEDEX	4	3	4	2	13
Layered chromite	4	4	2	2	12
Epithermal (HS)	3	2	3	4	12
IOCG	3	3	3	3	12
MVT	3	3	4	2	12
Bauxite deposit	4	2	4	2	12
Sedimentary manganese	4	2	4	2	12
Sandstone hosted uranium	2	3	3	3	11
Greisen	1	3	3	3	10
Podiform chromite	2	4	1	2	9
Carlin type ore	1	3	3	1	8
Porphyry copper	1	3	3	1	8

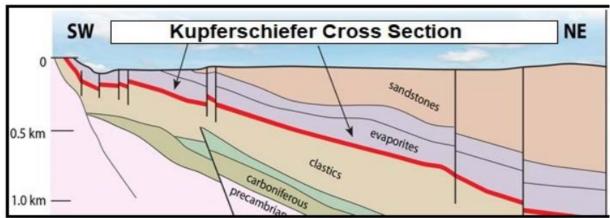
https://www.intechopen.com



https://hu.pinterest.com/pin/677932550 128147138/

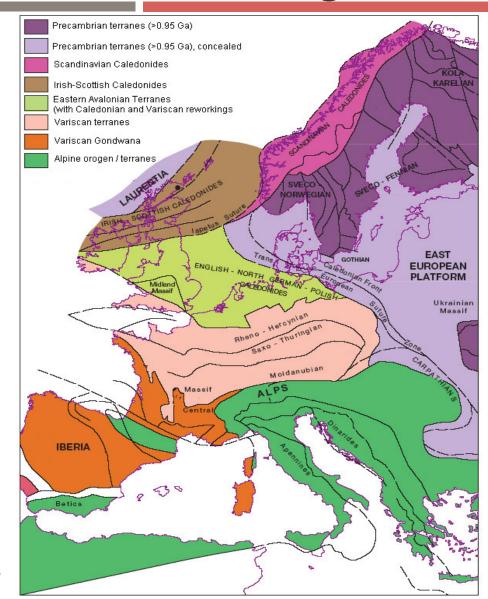
Database of deposits relevant for ROBOMINERS

- Data collection from 17 countries by EFG's LTPs
- Mining information, historic time range, geotechnical conditions, deposit type, commodities, magnitude, geographycal, geological information
- Number of sites: 1547
- Data will be visualised, available from the project website from July


Mining scenarios

- Abandoned mines and operating mines with known remaining unfeasible sections (no need for full recommissioning or dewatering of the mine.)
- Ultra depth (in Europe deeper than 1500m). A large diameter borehole will be drilled from the surface to the deepseated deposit.
- Small deposits uneconomic for traditional mining (no need for development of any mine infrastructure)

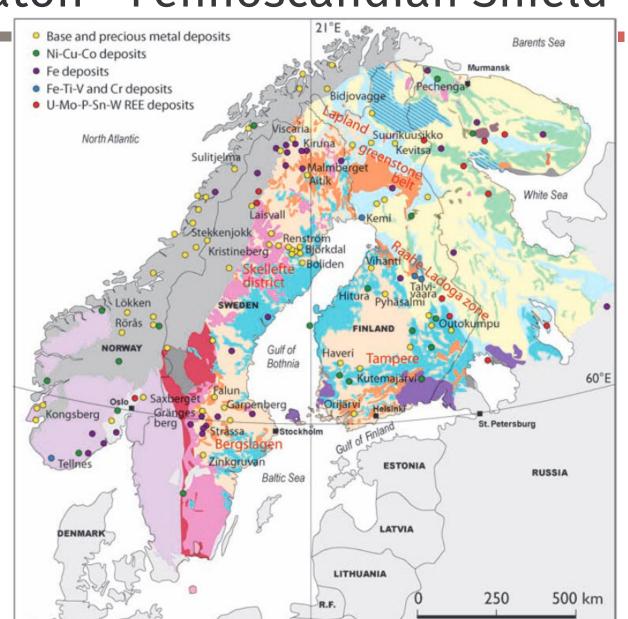
https://investingnews.com



European outlook: potential targets in the European metallogenic belts

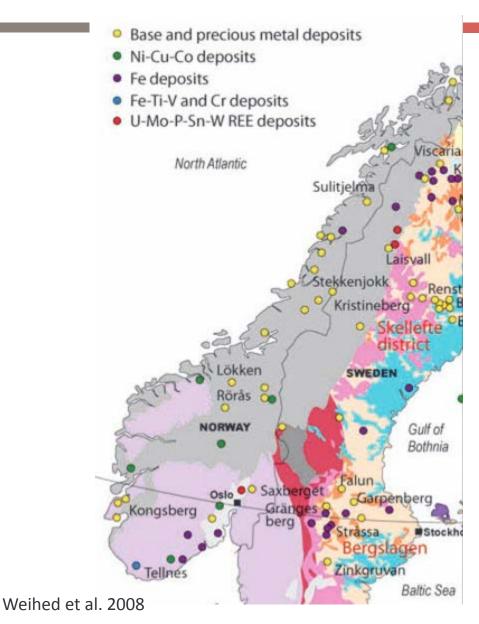
European metallogenic belts:

- East European Craton (Fennoscandian Shield)
- Caledonides (Scandinavia, British Isles)
- Variscides (Iberia SW-England France –
 Germany Czech Republic Poland)
- Alps Carpathians Balkans Dinarids



East European Craton - Fennoscandian Shield

Abandoned mines and operating mines with unfeasible sections:


- Skellefte and Bergslagen regions,
 Pyhasalmi: Cu, Zn, Pb, Co, Ni, Ag, Au
- Kittilä: Au
- Norrbotten, Bergslagen: REE
- Outokumpu: Cu, Zn, Co, Ni, Cr, Ag, Au
- Kemi deposit: Cr (dipping to NW -> <u>ultra</u> <u>deep</u>?)

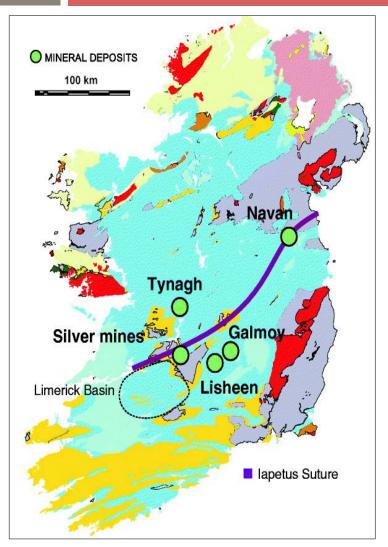
Caledonides - Scandinavia

- Mostly base and precious metal deposits Pb-Zn-Cu-Ag-Ag-As-Sb (abandoned and operating mines)
- Abandoned mines: Kongsberg silver district, Ag-Hg-Sb vein mineralisation. 80 mining sites, 1623-1958
- <u>Ultra depth:</u> Alum Shale: U, Mo, Ni, V, As,
 Zn, Cd, Pb, REE; at 7 km depth in Denmark!
- Fen Complex: Fe-Nb-REE, Ni-Cu-PGE only exploration

Caledonides – British Isles

Abandoned mines, operating mines, small deposits:

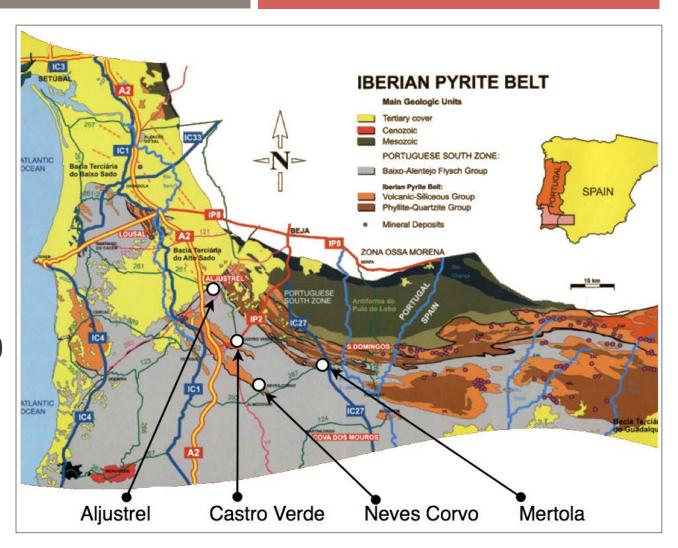
Ireland – Zn-Pb-Ag, numerous vein-type deposits


Scotland – minor importance.

Au, Ag: Tyndrum (reopening an old

mine)

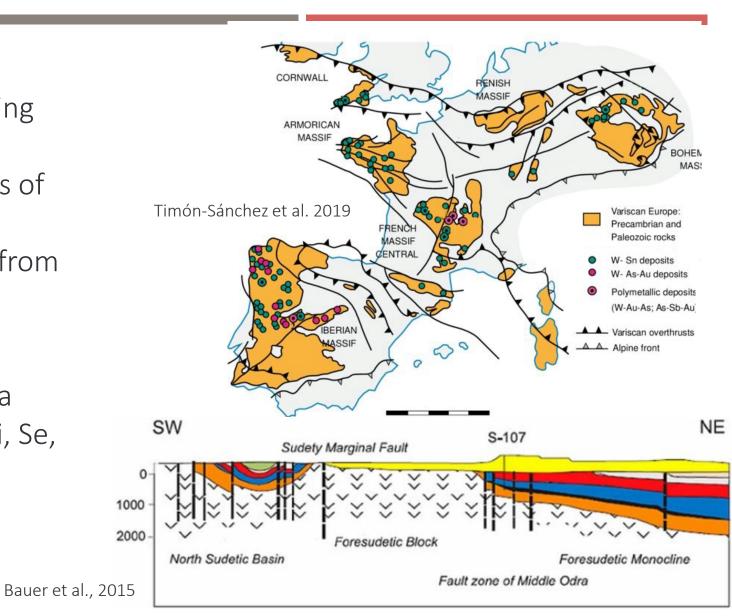
https://www.geograph.org.uk/photo/3439597


Davidheiser-Kroll et al. 2014

Variscides – Iberian Peninsula

Abandoned mines and operating mines with unfeasible sections

- Iberian Pyrite Belt: 240×70km
- VMS type deposits
- Mined from 8th century BC
- Cu, Pb, Zn, Ag, Au (Sb, Bi, Co)
- Originally 2000 Mt ore, still has 400 Mt left to exploit

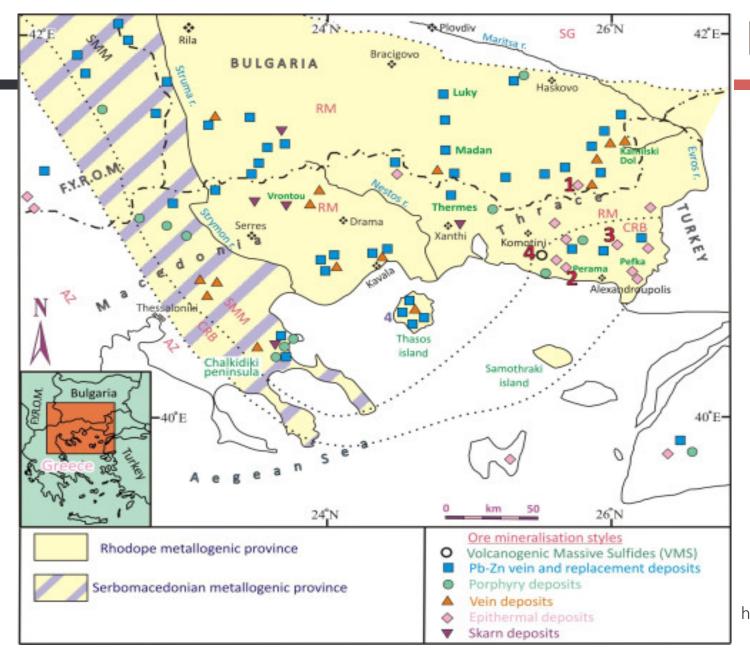

Variscides – from SW-England to Poland

Abandoned mines, small deposits:

- Cornwall: Sn, Cu (W, Zn, Ag, As), mining from 2000 BC
- Erzgebirge: Sn, Ag, Li, W, U; 800 years of mining. Cinovec: Li
- Many abandoned base metal mines from Spain to Poland (Rammelsberg)

<u>Ultra deep:</u>

Kupferschiefer: from England to Silesia
Cu, Pb, Zn (V, Mo, U, Ag, As, Sb, Hg, Bi, Se,
Cd, Tl, Au, PGE)
Known from 2km depth in SW Poland
The Cu-rich shale is <2m thick



Western Carpathians 200 km Eastern Alpine Province Hodrusa Bern Zünch Salzburg Wien Bratislava Beregovo Eastern Alps Lausanne Eisenerz Recsk Rabenwald Baia Mare Budapest OHohe Tauern Graz Apuseni russon Mits. Milano * Rosia Poleni Rosia Montana Ljubljana Venezia-Brad Sacarimb Southern Carb. Orogenic Au Bucuresti ♦Ocna de Fier Porphyry Cu-Mo-Au Cons-Majdanpek Polymetallic Pb-Zn-Ag-Au: tanza e.g. skarn, low-sulphidation polymetallic vein and carbonate replacement, and high-sulphidation, Elatitse helopech Assarel Sofia Medet Balkan massive sulphide **ADRIATIC** Dubrovnik BLACK Metamorphogenic mineralisations SEA (siderite, magnesite, talc) Burgas * Ploydiv Osogovo Neogene volcanic and plutonic rocks Madan Miadiarovo Oligocene-Neogene basins Istanbul Skouries Maronia ABCD orogen Tertiary Inner Carpathian - Alpine metallogenetic belt **AEGEAN SEA** Oligocene - Miocene Serbomacedonian -Rhodope metallogenetic belt Major strike-slip fault Late Cretaceous (Apuseni - Balkan) Banatite magmatic-metallogenetic belt ("Banatite belt") Inferred faults Major thrust

Alpine Belt

Melcher & Reichl, 2017

Balkan Peninsula

Abandoned mines and operating mines with unfeasible sections:

Chelopek, Bulgaria: 40 Mt 1.1% Cu and 3.1 ppm Au ore since 1959

Albania: PGE bearing podiform chromite

https://authseg.wordpress.com/2016/12/18/293/

Thank you for your attention!

https://robominers.eu/